top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Handbook of Flexible and Smart Sheet Forming Techniques : Industry 4. 0 Approaches
Handbook of Flexible and Smart Sheet Forming Techniques : Industry 4. 0 Approaches
Autore Kumar Ajay
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (299 pages)
Altri autori (Persone) KumarParveen
SinghHari
GulatiVishal
Kumar SinghPravin
ISBN 1-119-98645-1
1-119-98643-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- Preface -- Chapter 1 Incremental Sheet Forming - A State-of-Art Review -- 1.1 Introduction to Incremental Sheet Forming -- 1.2 Incremental Sheet Forming Process -- 1.2.1 Single-Point Incremental Sheet Forming (SPISF) -- 1.2.2 Two-Point Incremental Sheet Forming (TPISF) -- 1.2.3 Double-Sided Incremental Forming -- 1.2.4 Hybrid Incremental Forming -- 1.2.5 Thermal-Assisted Incremental Forming (TAIF) -- 1.3 Materials for Incremental Sheet Forming -- 1.4 Formability Limits with AI Implementation -- 1.5 Conclusions and Future Scope -- References -- Chapter 2 Classification of Incremental Sheet Forming -- 2.1 Introduction -- 2.1.1 History -- 2.2 Classification of ISF -- 2.2.1 Classification Based on Forming Methods of ISF -- 2.2.1.1 SPIF -- 2.2.1.2 TPIF -- 2.2.1.3 MPIF -- 2.2.1.4 Hybrid-ISF -- 2.2.2 Classification Based on Forming Tools of ISF -- 2.2.3 Classification Based on Forming Path of ISF -- 2.2.4 Classification Based on Forming Machine of ISF -- 2.2.5 Classification Based on Hot Forming of ISF -- 2.3 Conclusion -- 2.4 Future Work -- References -- Chapter 3 A Review on Effect of Computer-Aided Machining Parameters in Incremental Sheet Forming -- 3.1 Introduction -- 3.2 Process Parameters -- 3.2.1 Effects of Process Parameters on Surface Roughness -- 3.2.2 Effect of Process Parameters on Forming Force -- 3.2.3 Effect of Process Parameters on Formability -- 3.2.4 Effect of Process Parameters on Thickness Distribution -- 3.2.5 Effect of Process Parameters on Dimensional Accuracy -- 3.2.6 Effect of Process Parameters on the Processing Time -- 3.2.7 Effect of Process Parameters on Energy Consumption -- 3.3 Conclusion -- 3.4 Future Work -- Funding Statement -- Conflicts of Interest -- Acknowledgment -- References.
Chapter 4 Equipment and Operative for Industrializing the SPIF of Ti-6Al-4V -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Original Equipment -- 4.2.2 Methodology -- 4.3 Results and Discussion -- 4.3.1 Hot SPIF System -- 4.3.1.1 Forming Temperatures Range -- 4.3.1.2 Concept -- 4.3.1.3 Heating Units and Control -- System Validation -- 4.3.1.4 Forming Tool -- 4.3.1.5 Costs Assessment -- 4.3.2 Hot SPIF of Ti-6Al-4V -- 4.3.2.1 Overview -- 4.3.2.2 Temperature Cycles -- 4.3.2.3 Practices for Higher Accuracy -- 4.4 Conclusion -- References -- Chapter 5 Texture Development During Incremental Sheet Forming (ISF): A State-of-the-Art Review -- 5.1 Introduction -- 5.2 Crystallographic Texture -- 5.2.1 Introduction to Crystallographic Texture -- 5.2.2 Texture Evolution During ISF -- 5.2.2.1 Texture Evolution During ISF of Aluminum Alloys -- 5.2.2.2 Texture Development in ISF of AA1050 Alloy in Three Stages of SPIF -- 5.3 Microstructure Evolution During ISF -- 5.3.1 Microstructures -- 5.3.2 Microstructure Evolution During ISF in Various Materials -- 5.3.2.1 AA5052 Aluminum Alloy -- 5.3.2.2 Dual Phase (DP590) Steel -- 5.4 Deformation Mechanism During ISF -- 5.4.1 Membrane Strain -- 5.4.2 Shear Deformation -- 5.4.3 Bending Under Tension (BUT) -- 5.5 Future Scope -- 5.6 Summary -- Abbreviations -- References -- Chapter 6 Analyses of Stress and Forces in Single-Point Incremental Sheet Metal Forming -- 6.1 Introduction -- 6.1.1 Classification of ISF Based on Forming Methods -- 6.2 Experimental Setup -- 6.2.1 Machining Parameters in ISF -- 6.2.2 Tool Path Strategies -- 6.3 FE Analysis of ISF -- 6.3.1 Analysis of Stress on Parts -- 6.3.2 Forces Behavior in ISF -- 6.3.3 Stress Effect on Thinning Part -- 6.3.4 Applications of ISF -- 6.3.5 Result and Discussion -- 6.3.5.1 Stress Behavior -- 6.3.5.2 Force Behavior -- 6.3.5.3 Thinning Characteristics.
6.4 Conclusion -- 6.5 Future work -- References -- Chapter 7 Finite Element Simulation Approach in Incremental Sheet Forming Process -- 7.1 Introduction -- 7.2 Finite Element Simulation -- 7.2.1 Definition -- 7.2.2 History of Finite Element Method -- 7.2.3 Various Software Used for Finite Element Simulation in Incremental Sheet Forming Process -- 7.2.4 Categories and Types of Finite Element Method Simulation -- 7.2.5 Application of Finite Element Simulation in Incremental Sheet Forming Process -- 7.2.6 Advantages of Finite Element Simulation in Incremental Sheet Forming Process -- 7.3 Conclusion -- References -- Chapter 8 Detection of Defect in Sheet Metal Industry: An Implication of Fault Tree Analysis -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Data Collection -- 8.2.2 Problem Description -- 8.2.3 FMEA Analysis -- 8.2.4 Fault Tree Analysis -- 8.2.5 Fishbone Diagram -- 8.3 Result and Analysis -- 8.4 Discussion -- 8.5 Conclusion -- References -- Chapter 9 Integration of IoT, Fog- and Cloud-Based Computing-Oriented Communication Protocols in Smart Sheet Forming -- 9.1 Introduction -- 9.2 Background -- 9.3 Communication Protocol Overview -- 9.3.1 HTTP: Hyper Text Transfer Protocol -- 9.3.2 CoAP: Constrained Application Protocols -- 9.3.3 MQTT: MQ Telemetry Transport -- 9.3.4 DDS: Data Distribution Services -- 9.3.5 AMQP: Advanced Message Queuing Protocol -- 9.3.6 XMPP: Extensible Messaging and Presence Protocol -- 9.4 Comparative Study of Communication Protocol for IoT Premise -- 9.5 IOT, FOG, and CLOUD (ITCFBC) Are Interrelated -- 9.6 Challenges and Related Issues -- 9.7 Conclusion and Future Scope -- References -- Chapter 10 Blockchain for the Internet of Things and Industry 4.0 Application -- 10.1 Introduction -- 10.2 Blockchain's Application in a Wide Range of Industries -- 10.2.1 Supply Chain -- 10.2.2 Financial Transactions.
10.2.3 Encryption of Data -- 10.2.4 Product Information -- 10.2.5 Peer-to-Peer Trading -- 10.3 Blockchain Plays in the Future of Our Economy -- 10.3.1 The End of Corruption -- 10.3.2 Integrity -- 10.3.3 Contracts Without the Middle Person -- 10.3.4 No Financial Stand -- 10.3.5 Easier Management Without Analytics -- 10.4 Changes in Society Using the Internet of Things and Blockchain -- 10.4.1 Changes Through Blockchain -- 10.4.2 Changes Through the Internet of Things -- 10.5 Blockchain Transform Industries and the Economy -- 10.6 Blockchain Support Swinburne's Industry 4.0 Strategy -- 10.7 Blockchain Technology's Impact on the Digital Economy -- 10.7.1 Changes in the Architecture -- 10.7.2 Networking and Verification Expenses Are Reduced -- 10.7.3 Automation -- 10.8 Chains Are Being Revolutionized by Blockchain Technology -- 10.8.1 Manual Procedures Are Being Replaced -- 10.8.2 Increased Traceability -- 10.8.3 Reliability and Trustworthiness Are Being Improved -- 10.8.4 Processing Transactions in a Timely and Effective Manner -- 10.9 Businesses That Use Blockchain Technology -- 10.9.1 Blockchain Can Boost Supply Chain Value -- 10.10 Real-World Use Cases for dApps and Smart Contracts -- 10.10.1 Financial Use Cases for Smart Contracts -- 10.10.2 Gaming Using Blockchain Technology: NFTs and Smart Contracts -- 10.10.3 Blockchain and Smart Contracts in the Legal Industry -- 10.10.4 Real Estate and Blockchain -- 10.10.5 Creating DAOs with Smart Contracts for Corporate Structures -- 10.10.6 Smart Contracts in Emerging Technology Applications -- 10.10.7 Smart Contracts' Potential Benefits in Other Industries -- 10.11 Blockchain Is About to Revolutionize the Courtroom -- 10.11.1 Enhanced Security Levels -- 10.11.2 Better Agreements -- 10.12 Conclusion -- References.
Chapter 11 Experimental Study on the Fabrication of Plain Weave Copper Strips Mesh-Embedded Hybrid Composite and Its Benefits Over Traditional Sheet Metal -- 11.1 Introduction -- 11.1.1 Composite Material: Overview -- 11.1.2 Classification of Composite Materials -- 11.1.3 Fiber-Reinforced Plastic (FRP) Composite Material -- 11.1.4 Advantages of Composites -- 11.1.5 Why Composites Are Replacing Traditional Sheet Metals -- 11.1.5.1 High Degree of Strength -- 11.1.5.2 Longer Life Span -- 11.1.5.3 Composites Allow New Design Possibilities -- 11.1.6 Applications of Hybrid Composites Over Sheet Metals -- 11.1.7 Failure Modes -- 11.1.8 Concerns About Disposal and Reuse -- 11.1.9 Problem Definition -- 11.1.10 Layout of the Project -- 11.1.11 Research Objectives -- 11.1.12 Research Application -- 11.2 Proposed Methodology -- 11.3 Experimental Procedure -- 11.3.1 Raw Materials -- 11.3.1.1 E-Glass Fiber (CSM) -- 11.3.1.2 Epoxy Resin (Araldite LY556) -- 11.3.1.3 Hardener (Aradur HY951) -- 11.3.1.4 Flat Copper Sheet -- 11.3.2 Mold Preparation -- 11.3.3 Releasing Agent -- 11.3.4 Plain Weave Copper Strips Mesh Preparation -- 11.3.5 Composite Preparation -- 11.3.6 De-Molding Process -- 11.3.7 Mechanical and Physical Studies of GFRP and Hybrid Composites -- 11.3.7.1 Tensile Strength Testing -- 11.3.7.2 Flexural Strength Testing -- 11.3.7.3 Izod Impact Strength Testing -- 11.3.7.4 Shore D Hardness Testing -- 11.3.7.5 Density Testing -- 11.4 Results and Discussions -- 11.4.1 Tensile Strength -- 11.4.2 Flexural Strength -- 11.4.3 Izod Impact Strength -- 11.4.4 Shore D Hardness -- 11.4.5 Density -- 11.5 Conclusions -- 11.6 Future Scope -- References -- Chapter 12 Application of Reconfigurable System Thinking in Reconfigurable Bending Machine and Assembly Systems -- 12.1 Introduction: Background and Overview -- 12.1.1 Definition of Key Terms.
12.2 Description of Machining, Bending, and Assembly Processes.
Record Nr. UNINA-9910830304403321
Kumar Ajay  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of Flexible and Smart Sheet Forming Techniques : Industry 4. 0 Approaches
Handbook of Flexible and Smart Sheet Forming Techniques : Industry 4. 0 Approaches
Autore Kumar Ajay
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (299 pages)
Altri autori (Persone) KumarParveen
SinghHari
GulatiVishal
Kumar SinghPravin
ISBN 1-119-98645-1
1-119-98643-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- Preface -- Chapter 1 Incremental Sheet Forming - A State-of-Art Review -- 1.1 Introduction to Incremental Sheet Forming -- 1.2 Incremental Sheet Forming Process -- 1.2.1 Single-Point Incremental Sheet Forming (SPISF) -- 1.2.2 Two-Point Incremental Sheet Forming (TPISF) -- 1.2.3 Double-Sided Incremental Forming -- 1.2.4 Hybrid Incremental Forming -- 1.2.5 Thermal-Assisted Incremental Forming (TAIF) -- 1.3 Materials for Incremental Sheet Forming -- 1.4 Formability Limits with AI Implementation -- 1.5 Conclusions and Future Scope -- References -- Chapter 2 Classification of Incremental Sheet Forming -- 2.1 Introduction -- 2.1.1 History -- 2.2 Classification of ISF -- 2.2.1 Classification Based on Forming Methods of ISF -- 2.2.1.1 SPIF -- 2.2.1.2 TPIF -- 2.2.1.3 MPIF -- 2.2.1.4 Hybrid-ISF -- 2.2.2 Classification Based on Forming Tools of ISF -- 2.2.3 Classification Based on Forming Path of ISF -- 2.2.4 Classification Based on Forming Machine of ISF -- 2.2.5 Classification Based on Hot Forming of ISF -- 2.3 Conclusion -- 2.4 Future Work -- References -- Chapter 3 A Review on Effect of Computer-Aided Machining Parameters in Incremental Sheet Forming -- 3.1 Introduction -- 3.2 Process Parameters -- 3.2.1 Effects of Process Parameters on Surface Roughness -- 3.2.2 Effect of Process Parameters on Forming Force -- 3.2.3 Effect of Process Parameters on Formability -- 3.2.4 Effect of Process Parameters on Thickness Distribution -- 3.2.5 Effect of Process Parameters on Dimensional Accuracy -- 3.2.6 Effect of Process Parameters on the Processing Time -- 3.2.7 Effect of Process Parameters on Energy Consumption -- 3.3 Conclusion -- 3.4 Future Work -- Funding Statement -- Conflicts of Interest -- Acknowledgment -- References.
Chapter 4 Equipment and Operative for Industrializing the SPIF of Ti-6Al-4V -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Original Equipment -- 4.2.2 Methodology -- 4.3 Results and Discussion -- 4.3.1 Hot SPIF System -- 4.3.1.1 Forming Temperatures Range -- 4.3.1.2 Concept -- 4.3.1.3 Heating Units and Control -- System Validation -- 4.3.1.4 Forming Tool -- 4.3.1.5 Costs Assessment -- 4.3.2 Hot SPIF of Ti-6Al-4V -- 4.3.2.1 Overview -- 4.3.2.2 Temperature Cycles -- 4.3.2.3 Practices for Higher Accuracy -- 4.4 Conclusion -- References -- Chapter 5 Texture Development During Incremental Sheet Forming (ISF): A State-of-the-Art Review -- 5.1 Introduction -- 5.2 Crystallographic Texture -- 5.2.1 Introduction to Crystallographic Texture -- 5.2.2 Texture Evolution During ISF -- 5.2.2.1 Texture Evolution During ISF of Aluminum Alloys -- 5.2.2.2 Texture Development in ISF of AA1050 Alloy in Three Stages of SPIF -- 5.3 Microstructure Evolution During ISF -- 5.3.1 Microstructures -- 5.3.2 Microstructure Evolution During ISF in Various Materials -- 5.3.2.1 AA5052 Aluminum Alloy -- 5.3.2.2 Dual Phase (DP590) Steel -- 5.4 Deformation Mechanism During ISF -- 5.4.1 Membrane Strain -- 5.4.2 Shear Deformation -- 5.4.3 Bending Under Tension (BUT) -- 5.5 Future Scope -- 5.6 Summary -- Abbreviations -- References -- Chapter 6 Analyses of Stress and Forces in Single-Point Incremental Sheet Metal Forming -- 6.1 Introduction -- 6.1.1 Classification of ISF Based on Forming Methods -- 6.2 Experimental Setup -- 6.2.1 Machining Parameters in ISF -- 6.2.2 Tool Path Strategies -- 6.3 FE Analysis of ISF -- 6.3.1 Analysis of Stress on Parts -- 6.3.2 Forces Behavior in ISF -- 6.3.3 Stress Effect on Thinning Part -- 6.3.4 Applications of ISF -- 6.3.5 Result and Discussion -- 6.3.5.1 Stress Behavior -- 6.3.5.2 Force Behavior -- 6.3.5.3 Thinning Characteristics.
6.4 Conclusion -- 6.5 Future work -- References -- Chapter 7 Finite Element Simulation Approach in Incremental Sheet Forming Process -- 7.1 Introduction -- 7.2 Finite Element Simulation -- 7.2.1 Definition -- 7.2.2 History of Finite Element Method -- 7.2.3 Various Software Used for Finite Element Simulation in Incremental Sheet Forming Process -- 7.2.4 Categories and Types of Finite Element Method Simulation -- 7.2.5 Application of Finite Element Simulation in Incremental Sheet Forming Process -- 7.2.6 Advantages of Finite Element Simulation in Incremental Sheet Forming Process -- 7.3 Conclusion -- References -- Chapter 8 Detection of Defect in Sheet Metal Industry: An Implication of Fault Tree Analysis -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Data Collection -- 8.2.2 Problem Description -- 8.2.3 FMEA Analysis -- 8.2.4 Fault Tree Analysis -- 8.2.5 Fishbone Diagram -- 8.3 Result and Analysis -- 8.4 Discussion -- 8.5 Conclusion -- References -- Chapter 9 Integration of IoT, Fog- and Cloud-Based Computing-Oriented Communication Protocols in Smart Sheet Forming -- 9.1 Introduction -- 9.2 Background -- 9.3 Communication Protocol Overview -- 9.3.1 HTTP: Hyper Text Transfer Protocol -- 9.3.2 CoAP: Constrained Application Protocols -- 9.3.3 MQTT: MQ Telemetry Transport -- 9.3.4 DDS: Data Distribution Services -- 9.3.5 AMQP: Advanced Message Queuing Protocol -- 9.3.6 XMPP: Extensible Messaging and Presence Protocol -- 9.4 Comparative Study of Communication Protocol for IoT Premise -- 9.5 IOT, FOG, and CLOUD (ITCFBC) Are Interrelated -- 9.6 Challenges and Related Issues -- 9.7 Conclusion and Future Scope -- References -- Chapter 10 Blockchain for the Internet of Things and Industry 4.0 Application -- 10.1 Introduction -- 10.2 Blockchain's Application in a Wide Range of Industries -- 10.2.1 Supply Chain -- 10.2.2 Financial Transactions.
10.2.3 Encryption of Data -- 10.2.4 Product Information -- 10.2.5 Peer-to-Peer Trading -- 10.3 Blockchain Plays in the Future of Our Economy -- 10.3.1 The End of Corruption -- 10.3.2 Integrity -- 10.3.3 Contracts Without the Middle Person -- 10.3.4 No Financial Stand -- 10.3.5 Easier Management Without Analytics -- 10.4 Changes in Society Using the Internet of Things and Blockchain -- 10.4.1 Changes Through Blockchain -- 10.4.2 Changes Through the Internet of Things -- 10.5 Blockchain Transform Industries and the Economy -- 10.6 Blockchain Support Swinburne's Industry 4.0 Strategy -- 10.7 Blockchain Technology's Impact on the Digital Economy -- 10.7.1 Changes in the Architecture -- 10.7.2 Networking and Verification Expenses Are Reduced -- 10.7.3 Automation -- 10.8 Chains Are Being Revolutionized by Blockchain Technology -- 10.8.1 Manual Procedures Are Being Replaced -- 10.8.2 Increased Traceability -- 10.8.3 Reliability and Trustworthiness Are Being Improved -- 10.8.4 Processing Transactions in a Timely and Effective Manner -- 10.9 Businesses That Use Blockchain Technology -- 10.9.1 Blockchain Can Boost Supply Chain Value -- 10.10 Real-World Use Cases for dApps and Smart Contracts -- 10.10.1 Financial Use Cases for Smart Contracts -- 10.10.2 Gaming Using Blockchain Technology: NFTs and Smart Contracts -- 10.10.3 Blockchain and Smart Contracts in the Legal Industry -- 10.10.4 Real Estate and Blockchain -- 10.10.5 Creating DAOs with Smart Contracts for Corporate Structures -- 10.10.6 Smart Contracts in Emerging Technology Applications -- 10.10.7 Smart Contracts' Potential Benefits in Other Industries -- 10.11 Blockchain Is About to Revolutionize the Courtroom -- 10.11.1 Enhanced Security Levels -- 10.11.2 Better Agreements -- 10.12 Conclusion -- References.
Chapter 11 Experimental Study on the Fabrication of Plain Weave Copper Strips Mesh-Embedded Hybrid Composite and Its Benefits Over Traditional Sheet Metal -- 11.1 Introduction -- 11.1.1 Composite Material: Overview -- 11.1.2 Classification of Composite Materials -- 11.1.3 Fiber-Reinforced Plastic (FRP) Composite Material -- 11.1.4 Advantages of Composites -- 11.1.5 Why Composites Are Replacing Traditional Sheet Metals -- 11.1.5.1 High Degree of Strength -- 11.1.5.2 Longer Life Span -- 11.1.5.3 Composites Allow New Design Possibilities -- 11.1.6 Applications of Hybrid Composites Over Sheet Metals -- 11.1.7 Failure Modes -- 11.1.8 Concerns About Disposal and Reuse -- 11.1.9 Problem Definition -- 11.1.10 Layout of the Project -- 11.1.11 Research Objectives -- 11.1.12 Research Application -- 11.2 Proposed Methodology -- 11.3 Experimental Procedure -- 11.3.1 Raw Materials -- 11.3.1.1 E-Glass Fiber (CSM) -- 11.3.1.2 Epoxy Resin (Araldite LY556) -- 11.3.1.3 Hardener (Aradur HY951) -- 11.3.1.4 Flat Copper Sheet -- 11.3.2 Mold Preparation -- 11.3.3 Releasing Agent -- 11.3.4 Plain Weave Copper Strips Mesh Preparation -- 11.3.5 Composite Preparation -- 11.3.6 De-Molding Process -- 11.3.7 Mechanical and Physical Studies of GFRP and Hybrid Composites -- 11.3.7.1 Tensile Strength Testing -- 11.3.7.2 Flexural Strength Testing -- 11.3.7.3 Izod Impact Strength Testing -- 11.3.7.4 Shore D Hardness Testing -- 11.3.7.5 Density Testing -- 11.4 Results and Discussions -- 11.4.1 Tensile Strength -- 11.4.2 Flexural Strength -- 11.4.3 Izod Impact Strength -- 11.4.4 Shore D Hardness -- 11.4.5 Density -- 11.5 Conclusions -- 11.6 Future Scope -- References -- Chapter 12 Application of Reconfigurable System Thinking in Reconfigurable Bending Machine and Assembly Systems -- 12.1 Introduction: Background and Overview -- 12.1.1 Definition of Key Terms.
12.2 Description of Machining, Bending, and Assembly Processes.
Record Nr. UNINA-9910840713303321
Kumar Ajay  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui