top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
AI for Status Monitoring of Utility Scale Batteries
AI for Status Monitoring of Utility Scale Batteries
Autore Wang Shunli
Edizione [1st ed.]
Pubbl/distr/stampa Stevenage : , : Institution of Engineering & Technology, , 2023
Descrizione fisica 1 online resource (385 pages)
Disciplina 006.31
Altri autori (Persone) LiuKailong
WangYujie
StroeDaniel-Ioan
FernándezCarlos (Lecturer in Analytical Chemistry)
GuerreroJosep M
Collana Energy Engineering
Soggetto topico Machine learning
ISBN 1-83724-508-8
1-5231-5354-7
1-83953-739-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Halftitle Page -- Series Page -- Title Page -- Copyright -- Contents -- About the Authors -- Foreword -- Preface -- List of contributors -- 1 Introduction -- 1.1 Motivation for utility-scale battery deployment -- 1.2 Definition of AI in the context of battery management -- 1.3 Advantages of using AI for battery management -- 2 Utility-­scale lithium-­ion battery system characteristics -- 2.1 Overview of lithium-ion batteries -- 2.1.1 Battery working principle -- 2.1.2 Principles of status monitoring of utility-scale batteries -- 2.2 Lithium-ion batteries -- 2.2.1 Lithium iron phosphate batteries -- 2.2.2 Lithium cobaltate oxide batteries -- 2.2.3 Lithium manganese oxide batteries -- 2.3 Large capacity lithium-ion batteries -- 2.3.1 Application areas of utility-scale batteries -- 2.3.2 Characteristics of utility-scale battery systems -- 2.3.3 Operational challenges of utility-scale battery systems -- 3 AI-­based equivalent modeling and parameter identification -- 3.1 Overview of battery equivalent circuit modeling -- 3.2 Modeling types and concepts -- 3.3 Equivalent circuit modeling methods
Record Nr. UNINA-9911007155703321
Wang Shunli  
Stevenage : , : Institution of Engineering & Technology, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data-Driven Energy Management and Tariff Optimization in Power Systems : Shaping the Future of Electricity Distribution Through Analytics
Data-Driven Energy Management and Tariff Optimization in Power Systems : Shaping the Future of Electricity Distribution Through Analytics
Autore Arasteh Hamidreza
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (320 pages)
Disciplina 333.7932
Altri autori (Persone) SianoPierluigi
MoslemiNiki
GuerreroJosep M
Soggetto topico Electric power systems - Management
Energy consumption - Forecasting
ISBN 1-394-29030-6
1-394-29028-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Chapter 1 Fundamentals of Power System Data and Analytics -- 1.1 Introduction -- 1.2 Background -- 1.2.1 Concept, Opportunities, and Challenges of Present and Future Power Systems -- 1.2.2 Transformation in the Power Industry -- 1.2.3 Drivers and Barriers -- 1.3 Data‐rich Power Systems -- 1.3.1 Data Sources and Types -- 1.3.2 Data Structure -- 1.4 Data Analytics in Power Systems -- 1.4.1 What Is Data Analytics? -- 1.4.2 Analytics Techniques -- 1.5 Data Analytics‐Based Decision‐Making in Future Power Systems -- 1.5.1 Decision Framework -- 1.5.1.1 Uncertainty Issues -- 1.5.1.2 Behavioral Analytics -- 1.5.1.3 Policy Mechanisms -- 1.5.2 Computational Aspects -- 1.6 Conclusion -- 1.7 Future Trends and Challenges -- References -- Chapter 2 Advanced Predictive Modeling for Energy Consumption and Demand -- 2.1 The Role of Load Forecasting in Power System Planning -- 2.2 Need for Short‐Term Demand Forecasting -- 2.3 Components of Power Demand and Factors Affecting Demand Growth -- 2.3.1 Electricity Demand from the Consumer Type Perspective -- 2.3.2 Electricity Demand from the Supply Perspective -- 2.4 Electricity Demand in Networks with High Renewable Energy Sources -- 2.5 Machine Learning and Its Applications in Demand Forecast -- 2.5.1 Application of Clustering in Load Forecasting -- 2.6 The Impact of Macro‐decisions on Long‐term Load Forecasting -- 2.6.1 Natural Gas as a Primary Energy Carrier for Heating Demand -- 2.7 Conclusion -- References -- Chapter 3 Demand Response and Customer‐Centric Energy Management -- 3.1 Introduction -- 3.2 Background -- 3.3 Future Power Systems Aspects, Trends, and Challenges -- 3.4 Transforming to Customer‐Centric Era -- 3.4.1 Differences Between Customer‐Centric DR Solution and Other Ways in the Future Power System.
3.4.2 Drivers and Enablers -- 3.5 Customer‐Centric Power System Structure -- 3.5.1 Physical Layer -- 3.5.1.1 Physical Resources -- 3.5.1.2 Physical Constraints of the System -- 3.5.2 Cyber‐Social Layers -- 3.5.2.1 Centralized Approach (Traditional) -- 3.5.2.2 Decentralized Approach (Future) -- 3.6 Conclusion and Future Trends -- References -- Chapter 4 Applications of Data Mining in Industrial Tariff Design and Energy Management: Concepts and Practical Insights -- 4.1 Introduction -- 4.1.1 Data Mining: Concepts, Procedures, and Tools -- 4.1.2 Energy Management and the Role of Data Mining -- 4.1.3 Aims and Scope -- 4.2 Investigating Industrial Load Data: Analysis Through Various Indexes -- 4.3 Classification of Industries -- 4.4 Discussion and Conclusions -- References -- Chapter 5 Data‐Driven Tariff Design for Equitable Energy Distribution -- 5.1 Introduction -- 5.1.1 Literature Review and Contributions -- 5.1.2 Chapter Organization -- 5.2 Proposed Approach and Formulations -- 5.3 Describing the Case Study -- 5.4 Simulation Results -- 5.5 Conclusions and Future Works -- References -- Chapter 6 Applying Artificial Intelligence to Improve the Penetration of Renewable Energy in Power Systems -- 6.1 Introduction -- 6.2 Machine Learning Techniques -- 6.2.1 Artificial Neural Network and Deep Neural Network -- 6.2.2 Convolutional Neural Network -- 6.2.3 Recurrent Neural Network -- 6.2.4 Long Short‐Term Memory -- 6.3 General View of ML/DL Methods for RES Integration -- 6.3.1 Data Preprocessing -- 6.3.1.1 Normalization -- 6.3.1.2 Wrong/Missing Values and Outliers -- 6.3.1.3 Data Resolution -- 6.3.1.4 Inactive Time Data -- 6.3.1.5 Data Augmentation -- 6.3.1.6 Correlation -- 6.3.1.7 Data Clustering -- 6.3.2 Deterministic/Probabilistic Forecasting Methods -- 6.3.2.1 Deterministic Methods -- 6.3.2.2 Probabilistic Forecasting Methods -- 6.3.3 Evaluation Measures.
6.4 ML/DL Application for Integration of RES -- 6.4.1 Renewable Resources Data Prediction/Planning -- 6.4.2 RES Power Generation Prediction/Operation -- 6.4.3 Electric Load and Demand Forecasting -- 6.4.4 Stability Analysis -- 6.4.4.1 Security Assessment -- 6.4.4.2 Stability Assessment -- 6.5 Integrated Machine Learning and Optimization Approach -- 6.6 Conclusion -- References -- Chapter 7 Machine Learning‐Based Solutions for Renewable Energy Integration -- 7.1 Introduction -- 7.2 Machine Learning Importance in RESs Sector -- 7.2.1 AI‐Based Algorithms in RESs -- 7.2.2 ML Algorithms Application in RESs -- 7.3 Role of ML in Optimizing Renewable Energy Generation -- 7.3.1 Different Programming Models in RES Optimization -- 7.3.2 Optimization Objectives in RESs -- 7.3.3 ML Applications in Optimizing Renewable Energy Generation -- 7.4 Ensuring Grid Stability Through ML‐Based Forecasting -- 7.4.1 Grid Stability Forecasting -- 7.4.2 Grid Stability Through ML‐Based Forecasting -- 7.5 Challenges and Future Direction in ML‐Based Approaches to RESs -- 7.5.1 Challenges in ML‐Based Approaches to RESs -- 7.5.2 Future Directions in ML‐Based Approaches to RESs -- 7.6 Conclusion -- References -- Chapter 8 Application of Artificial Neural Networks in Solar Photovoltaic Power Forecasting -- 8.1 RES Share in World Energy Transition -- 8.2 Applications of PV Panels in Energy Systems -- 8.3 Disadvantages of PV Panels -- 8.4 Importance of PV Power Forecasting -- 8.5 Proposed Algorithm for PV Power Prediction -- 8.6 Numerical Results and Discussions -- 8.7 Concluding Remarks -- References -- Chapter 9 Power System Resilience Evaluation Data Challenges and Solutions -- 9.1 Introduction -- 9.2 A Review of Power System Resilience Metrics -- 9.3 The General Framework for the Resilience Assessment of the Power System -- 9.4 Data Required for Power System Resilience Studies.
9.4.1 Data of Natural Origin -- 9.4.2 Basic Data of the Power System -- 9.4.3 Data on Failure and Restoration Rates -- 9.5 Data Analysis and Correction -- 9.6 Disaster Forecasting in Power System Resilience Studies -- 9.7 Modeling the Impact of Disaster on Power System Performance -- 9.8 Static Model in Machine Learning -- 9.9 Spatiotemporal Random Process -- 9.9.1 Dynamic Model for Chain Failures -- 9.9.2 Nonstationary Failure‐Recovery‐Impact Processes -- 9.10 Lessons Learned and Concluding Remarks -- 9.11 Future Work -- References -- Chapter 10 Nonintrusive Load Monitoring in Smart Grids Using Deep Learning Approach -- 10.1 Introduction -- 10.2 Deep Learning Neural Networks -- 10.2.1 RNN -- 10.2.2 LSTM -- 10.2.3 CNN -- 10.2.4 Convolutional Layer -- 10.2.5 Pooling Layer -- 10.2.6 Fully Connected Layer -- 10.3 The Proposed Method -- 10.3.1 Pre‐Processing and Preparing Data -- 10.3.2 Proposed Method Architecture -- 10.3.3 Proposed Method's Parameters -- 10.3.4 Performance Evaluation -- 10.4 Results and Discussion -- 10.5 Challenges and Future Trends -- 10.6 Conclusion -- References -- Chapter 11 Power System Cyber‐Physical Security and Resiliency Based on Data‐Driven Methods -- 11.1 Introduction -- 11.2 Fundamental Concepts -- 11.2.1 Cyber‐Physical Power System (CPPS) -- 11.2.2 Security and Resiliency -- 11.3 Role of Data Analytics -- 11.3.1 Basic Methods -- 11.3.1.1 Supervised Learning (SL) -- 11.3.1.2 Unsupervised Learning (UL) -- 11.3.2 Advanced Techniques -- 11.3.2.1 Dimensionality Reduction (DR) -- 11.3.2.2 Feature Engineering -- 11.3.2.3 Reinforcement Learning -- 11.3.2.4 Integrated Models -- 11.4 Interdependency Modeling -- 11.4.1 Direct Modeling -- 11.4.2 Testbeds -- 11.4.3 Game‐Theoretic -- 11.4.4 Machine Learning -- 11.5 Cyber‐Physical Threats -- 11.5.1 Physical Attacks -- 11.5.2 Cyberattacks -- 11.5.2.1 Confidentiality.
11.5.2.2 Availability -- 11.5.2.3 Integrity -- 11.5.3 Coordinated Attacks -- 11.6 Defense Framework -- 11.6.1 Preventive Measures -- 11.6.1.1 Supply Chain Security -- 11.6.1.2 Access Control -- 11.6.1.3 Personnel Training -- 11.6.1.4 Resource Allocation -- 11.6.1.5 Infrastructure Hardening -- 11.6.1.6 Moving Target Defense -- 11.6.2 Mitigation Actions -- 11.6.2.1 Attack Detection -- 11.6.2.2 Data Recovery -- 11.6.2.3 Reconfiguration and Restoration -- 11.6.2.4 Forensic Analysis -- 11.7 Conclusion -- References -- Chapter 12 Application of Artificial Intelligence in Undervoltage Load Shedding in Digitalized Power Systems -- 12.1 Introduction -- 12.2 Load‐Shedding Strategies -- 12.2.1 Conventional LS -- 12.2.2 Adaptive LS -- 12.2.3 AI‐Based LS -- 12.3 Principles of UVLS -- 12.3.1 Amount of Load Shed -- 12.3.2 Location for LS -- 12.3.3 Application of VSI for UVLS -- 12.4 AI‐Based Methods -- 12.5 Case Study -- 12.5.1 Database Generation -- 12.5.2 Offline Training -- 12.5.3 Online Application -- 12.6 Future Challenges and Transfer Learning -- 12.7 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9911042410503321
Arasteh Hamidreza  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Innovations in Energy Management and Renewable Resources : Select Proceedings of IEMRE 2023 / / edited by Madhumita Pal, Josep M. Guerrero, Pierluigi Siano, Debapriya Das, Swati Chowdhuri
Innovations in Energy Management and Renewable Resources : Select Proceedings of IEMRE 2023 / / edited by Madhumita Pal, Josep M. Guerrero, Pierluigi Siano, Debapriya Das, Swati Chowdhuri
Autore Pal Madhumita
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (299 pages)
Disciplina 333.7
Altri autori (Persone) GuerreroJosep M
SianoPierluigi
DasDebapriya
ChowdhuriSwati
Collana Lecture Notes in Electrical Engineering
Soggetto topico Energy policy
Electric power production
Electric power distribution
Energy Policy, Economics and Management
Mechanical Power Engineering
Energy Grids and Networks
ISBN 9789819763900
9819763908
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Solar photovoltaic and Solar Thermal -- Wind, Hydro, Biomass and other renewable based Energy Systems -- Energy Storage and Management -- Smart Grid Technologies -- Renewable Energy Expansion and Policy Making.
Record Nr. UNINA-9910896188503321
Pal Madhumita  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microgrids and Virtual Power Plants / / edited by Farhad Shahnia, Josep M. Guerrero
Microgrids and Virtual Power Plants / / edited by Farhad Shahnia, Josep M. Guerrero
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (XVIII, 538 p. 315 illus., 293 illus. in color.)
Disciplina 321.319
Collana Power Systems
Soggetto topico Electric power distribution
Energy policy
Electric power-plants
Internet of things
Energy Grids and Networks
Energy Policy, Economics and Management
Power Stations
Internet of Things
ISBN 981-9766-23-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Holistic Data-Driven Approach for Sizing and Energy Management of an Urban Islanded Microgrid -- Probabilistic Microgrid Investment Planning with Integrated Game-Theoretic Demand Response Management -- Design and Modelling of Microgrids Operated at Constant Frequency and with a Power Level of Megawatt -- Design, sizing, and simulation of a DC microgrid for real implementation -- Microgrid Control Assessment Using Advanced Hardware in the Loop Technologies -- Stability and control of hybrid AC/DC microgrids -- Quantifying Transient Dynamics for Microgrid’s Inverter-based Resources -- Machine Learning and Internet-of-Things Solutions for Microgrid Resilient Operation -- Deep learning-based microgrid protection -- Cyber-attacks Detection and Mitigation in Microgrids -- Peer-to-Peer Trading among Microgrid Prosumers in Local Energy Markets -- Embedding Regulatory Frameworks in Microgrids Management -- Virtual Power Plant participation in Australian wholesale electricity markets -- Interconnected Microgrid Clusters through Various Provisional Power Exchange Links -- Cooperative and Transactive Integration of Multiple Microgrids -- Practical Aspects of Pre-Engineering Design of Clustered Microgrids -- Military Microgrids with Renewable Energy and 5G Communication.
Record Nr. UNINA-9910903789003321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Power Electronics for Next-Generation Drives and Energy Systems : Converters and Control for Drives, Volume 1
Power Electronics for Next-Generation Drives and Energy Systems : Converters and Control for Drives, Volume 1
Autore Kumar Nayan
Edizione [1st ed.]
Pubbl/distr/stampa Paris : , : Institution of Engineering & Technology, , 2023
Descrizione fisica 1 online resource (322 pages)
Disciplina 621.31
Altri autori (Persone) GuerreroJosep M
KasthaDebaprasad
SahaTapas Kumar
Collana Energy Engineering Series
Soggetto topico Power electronics
Electronic control
Electric current converters
ISBN 9781523153404
1523153407
9781839534706
1839534702
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- About the editors -- 1. Characteristics and modeling of wide band gap (WBG) power semiconductor | S. Toumi -- 2. Reliability of smart modern power electronic converter systems | Rupa Mishra, Nayan Kumar, Dibyendu Sen and Tapas Kumar Saha -- 3. Next-generation electrification of transportation systems: EV, ship, and rail transport | Carlos Reusser, Hector Young and Marcelo A. Perez -- 4. Multilevel inverter topologies and their applications | Faramarz Faraji, Amir Abbas Aghajani, Mojtaba Eldoromi, Ali Akbar Moti Birjandi, Amer M.Y.M. Ghias and Honnyong Cha -- 5. Multilevel inverters: topologies and optimization | Ebrahim Babaei and Mohammadamin Aalami -- 6. GaN oscillator-based DC-AC converter for wireless power transfer applications | Anwar Jarndal -- 7. Partial power processing and its emerging applications | Naser Hassanpour, Andrii Chub, Andrei Blinov and Samir Kouro -- 8. Matrix converters -- topologies, control methods, and applications | Ebrahim Babaei and Mohammadamin Aalami -- 9. Modelling, simulation and validation of average current and constant voltage operations in non-ideal buck and boost converters | Sumukh Surya, S. Mohan Krishna and Sheldon Williamson -- 10. Artificial intelligent-based modified direct torque control strategy: enhancing the dynamic torque response of permanent magnet electric traction | Dattatraya kalel, Harshit Mohan and R. Raja Sing -- 11. Non-parametric auto-tuning of PID controllers for DC-DC converters | Ahmed Shehada, Abdul R. Beig and Igor Boiko -- 12. Sliding mode control for DC-DC buck and boost converters | Igor Boiko and Ayman Ismail Al Zawaideh -- 13. Fractional-order controllers in power electronic converters | Allan G. S. Sanchez, Francisco J. Perez-Pinal and Martin A. Rodriguez-Licea.
14. Adjustable speed drive systems for industrial applications | Apparao Dekka, Deepak Ronanki, Ricardo Lizana Fuentes and Venkata Yaramasu -- Index.
Record Nr. UNINA-9911006989803321
Kumar Nayan  
Paris : , : Institution of Engineering & Technology, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui