Black hole physics : from collapse to evaporation / / Daniel Grumiller, Mohammad Mehdi Sheikh-Jabbari |
Autore | Grumiller Daniel |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (431 pages) |
Disciplina | 523.8875 |
Collana | Graduate texts in physics |
Soggetto topico |
Black holes (Astronomy)
Physics |
ISBN | 3-031-10343-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Preface -- How to Read and Use This Book -- Acknowledgements -- Contents -- Acronyms -- Notations and Conventions -- List of Figures -- 1 Introduction -- 1.1 Essentials of General Relativity -- 1.1.1 Equivalence Principle and Geodesics -- 1.1.2 Einstein Gravity -- 1.2 Brief Review of Black Hole History -- 1.2.1 First Five Decades: Finding Solutions and Classic Analyses -- 1.2.2 Black Holes Through Observations -- 1.2.3 Black Holes as Thermodynamical Systems -- 1.3 Gravitational Collapse in Stars -- 1.3.1 Core Collapse Supernova and Black Hole Formation -- 1.3.2 Estimating the Chandrasekhar Mass -- 1.4 Different Schools of Thought on Black Holes -- 1.4.1 GR School -- 1.4.2 HEP School -- 1.4.3 Quantum Information School -- 2 Black Hole Solutions and Basic Properties -- 2.1 Schwarzschild Metric, Basic Facts, and Analyses -- 2.1.1 Symmetries and Killing Vectors -- 2.1.2 Flamm Diagram -- 2.1.3 Singularities, Asymptotic, and Near Horizon Behavior -- 2.1.4 ADM Mass and Angular Momentum -- 2.1.5 Infinite Redshift Surface -- 2.2 Particle Probes and Geodesics -- 2.2.1 Null Geodesics -- 2.2.2 Timelike Geodesics and Particle Orbits -- 2.2.3 Eddington-Finkelstein Coordinates -- 2.3 Maximal Extensions and Causal Diagrams -- 2.3.1 Geodesic Completeness and Maximal Analytic Extension -- 2.3.2 Kruskal Coordinates for Schwarzschild Geometry -- 2.3.3 Structure of Lightcones and Preliminary Notion of Horizon -- 2.3.4 Carter-Penrose Causal Diagrams -- 2.3.5 Realistic Black Holes and Wormholes -- 2.4 Einstein-Maxwell Theory and Reissner-Nordström Black Holes -- 2.5 Kerr Solution and Its Basic Analysis -- 2.5.1 Basic Properties of Kerr Black Hole -- 2.5.2 Geodesics of Kerr Geometry -- 2.6 Black Holes in (A)dS Backgrounds -- 2.6.1 Schwarzschild-dS Black Holes -- 2.6.2 Schwarzschild-AdS and Topological Black Holes.
2.7 Plebanski-Demianski Black Holes -- 2.8 Vaidya Metric as Example for Non-stationary Black Holes -- 3 Formal Definitions and Classic Theorems -- 3.1 Mathematical Definitions of Black Holes and Horizons -- 3.1.1 Killing Horizon and Surface Gravity -- 3.1.2 Event Horizon and Mathematical Black Hole Definition -- 3.1.3 Apparent Horizons and Trapped Surfaces -- 3.1.4 Cauchy Horizons and Predictability -- 3.1.5 Other Horizon Definitions -- 3.2 Classic Conjectures and Theorems -- 3.2.1 Raychaudhuri Equation -- 3.2.2 Classical Energy Conditions -- 3.2.3 Singularity Theorems -- 3.2.4 Asymptotic Flatness -- 3.2.5 Horizon Theorems -- 3.2.6 Uniqueness Theorems -- 3.2.7 Cosmic Censorship Conjecture -- 3.3 Optical Focusing Equation and Area Theorem (2nd Law) -- 4 Probing Black Holes, Their Formation and Stability -- 4.1 General Remarks on Black Hole Observations -- 4.2 Black Hole Photon-Sphere, Shadows, and Images -- 4.3 Penrose Process, Super-Radiance, and Black Hole Mining -- 4.4 Gravitational Waves and Black Hole Mergers -- 4.5 Accretion Disk Physics -- 4.6 Black Hole Formation in Shock-Wave Collisions -- 4.7 Black Hole Perturbations and Linear Stability -- 4.7.1 Quasi-normal Modes -- 4.7.2 Late-Time Tails and Linearized Stability -- 4.7.3 Perturbative Aspects of Black Hole Binaries -- 4.8 Gravitational Collapse and Non-linear Stability -- 4.8.1 Critical Collapse and Choptuik Exponent -- 4.8.2 On Non-linear Stability of Black Hole Solutions -- 5 Black Hole Charges and Thermodynamics -- 5.1 Introduction to Systematic Methods for Charge Computation -- 5.2 Komar Charges -- 5.3 Solution Phase Space Method -- 5.3.1 Solution Space Is a Phase Space -- 5.3.2 Exact Symmetries and the Associated Charges -- 5.4 Entropy as a Conserved Charge -- 5.4.1 Entropy as a Noether Charge -- 5.4.2 Entropy and Solution Phase Space Method. 5.4.3 Entropy in Cases Involving Gauge Fields -- 5.5 Four Laws of Black Hole Thermodynamics -- 5.5.1 Zeroth Law -- 5.5.2 First Law and Its Derivation -- 5.5.3 Second Law and Its Generalizations -- 5.5.4 Third Law and Extremal Black Holes -- 6 Semiclassical Aspects of Black Holes -- 6.1 Variational Principle -- 6.1.1 Gibbons-Hawking-York Boundary Term -- 6.1.2 Brown-York Stress Tensor -- 6.2 Quantization on Black Hole Backgrounds -- 6.3 Unruh Effect -- 6.3.1 Unruh Vacuum State -- 6.3.2 Unruh Temperature, Bogoliubov Transformations -- 6.3.3 Unruh Temperature, Euclidean Field Theory Analysis -- 6.3.4 Discussion -- 6.4 Hawking Effect -- 6.4.1 Heuristics of Hawking Effect from Vacuum Fluctuations -- 6.4.2 Hawking Temperature from Euclidean Continuation -- 6.4.3 Hawking Radiation from Ray-Tracing -- 6.4.4 Hawking Radiation from Anomalies -- 6.4.5 Greybody Factors -- 6.4.6 Discussion -- 6.5 Black Hole Entropy and Alternative Derivations -- 6.5.1 Euclidean Effective Action and Gibbons-Hawking Derivation -- 6.5.2 Entropy Bounds -- 6.6 Parikh-Wilczek Tunneling -- 6.6.1 Painlevé Coordinates -- 6.6.2 Painlevé-Parikh-Wilczek Vacuum -- 6.6.3 Discussion of Parikh-Wilczek Tunneling -- 6.7 Black Hole Evaporation -- 6.8 Membrane Paradigm -- 6.8.1 Membrane Action and Dynamics, Classical Analysis -- 6.8.2 Membrane Action, Semiclassical Analysis -- 6.9 Information Puzzle and Apparent Loss of Unitarity -- 7 Gravity and Black Holes in Diverse Dimensions -- 7.1 Why Gravity in Lower Dimensions? -- 7.2 Gravity in Three Dimensions -- 7.2.1 BTZ Black Holes and Bañados Geometries -- 7.2.2 Chern-Simons Formulation -- 7.2.3 Canonical Boundary Charges -- 7.2.4 Alternative Boundary Conditions to Brown-Henneaux -- 7.2.5 Beyond AdS3 Einstein Gravity -- 7.3 Gravity in Two Dimensions -- 7.3.1 Jackiw-Teitelboim Model -- 7.3.2 Generic Dilaton Gravity -- 7.3.3 Gauge Theoretic Formulation. 7.3.4 All Classical Solutions, Locally and Globally -- 7.4 Why Gravity in Higher Dimensions? -- 7.5 Higher-Dimensional Black Hole/Ring/Brane Solutions -- 7.5.1 Tangherlini Solution -- 7.5.2 Myers-Perry Black Holes -- 7.5.3 Five-Dimensional Black Ring Solution -- 7.5.4 Asymptotic AdS Vacuum Black Hole Solutions -- 7.5.5 Black Branes -- 7.6 Black Holes in Large Number of Dimensions -- 8 Aspects of Holography -- 8.1 Basics of Holography -- 8.1.1 AdS/CFT, the Precise Statement -- 8.1.2 Gravity in Anti-De Sitter Space -- 8.1.3 Holographic Renormalization -- 8.1.4 Holographic Correlation Functions -- 8.2 Holography and Quantum Information -- 8.3 AdS Black Holes and Holography -- 8.3.1 Black Holes as Thermal States -- 8.3.2 Hawking-Page Phase Transition -- 8.3.3 Eternal Black Holes -- 8.4 Asymptotic Symmetries -- 8.5 Soft Hair and Near Horizon Symmetries -- 8.6 Extremal Black Holes and Attractor Mechanism -- 8.6.1 Symmetry Enhancement -- 8.6.2 Attractor Mechanism -- 8.7 Kerr/CFT and Related Topics -- 8.8 Summary and Outlook -- Further Reading -- 9 Quantum Aspects of Black Holes -- 9.1 Black Holes and Quantum Gravity -- 9.2 Black Hole Complementarity, Firewalls, Page Curve and Islands -- 9.3 Black Holes in String Theory -- 9.3.1 D1-D5-P System -- 9.3.2 Breckenridge-Myers-Peet-Vafa Solution -- 9.4 Microstate Counting -- 9.4.1 Microstate Counting for BTZ Black Holes -- 9.4.2 Microstate Counting for D1-D5-P and Breckenridge-Myers-Peet-Vafa Black Hole -- 9.5 Microstate Identification, Fuzzball and Fluffball Proposals -- 9.5.1 Fuzzball Proposal, Microstate Geometries -- 9.5.2 Soft Hair Proposal and Its Fluffball Realization -- 9.6 Information Puzzle and AdS/CFT -- 10 Outlook -- 10.1 Summary of the Book -- 10.2 Open Conceptual Issues -- 10.3 Observational Prospects -- A Variational Identities -- B p-Forms -- C Cartan Formulation -- Exercises. D Teukolsky Equation -- D.1 Newman-Penrose Formalism Applied to Kerr -- D.2 Teukolsky Master Equation as Heun Equation -- D.3 Remarks on the Teukolsky Equation for Vanishing Spin -- Exercises -- E Basics of QFT in Curved Spacetime -- Exercises -- F ADM 3+1 Decomposition -- Exercises -- G Covariant Phase Space Formalism -- Exercises -- H More on Membrane Paradigm -- Exercises -- I String Theory Low Energy Effective Actions -- Exercises -- J Hints to Some Selected Exercises -- Exercises of Chapter 1摥映數爠eflinkchap:intro11 -- Exercises of Chapter 2摥映數爠eflinkchap:basics22 -- Exercises of Chapter 3摥映數爠eflinkchap:advancedspsconcepts33 -- Exercises of Chapter 4摥映數爠eflinkchap:classicalspsaspects44 -- Exercises of Chapter 5摥映數爠eflinkchap:chargesspsthermo55 -- Exercises of Chapter 6摥映數爠eflinkchap:seminclassical66 -- Exercises of Chapter 7摥映數爠eflinkchap:expert77 -- Exercises of Chapter chap:holography -- Exercises of Chapter chap:quantum -- Exercises of Appendix A -- Exercises of Appendix B -- Exercises of Appendix C -- Exercises of Appendix D -- Exercises of Appendix E -- Exercises of Appendix F -- Exercises of Appendix G -- Exercises of Appendix H -- Exercises of Appendix I -- References. |
Record Nr. | UNISA-996499864103316 |
Grumiller Daniel | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Black hole physics : from collapse to evaporation / / Daniel Grumiller, Mohammad Mehdi Sheikh-Jabbari |
Autore | Grumiller Daniel |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (431 pages) |
Disciplina | 523.8875 |
Collana | Graduate texts in physics |
Soggetto topico |
Black holes (Astronomy)
Physics |
ISBN | 3-031-10343-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Preface -- How to Read and Use This Book -- Acknowledgements -- Contents -- Acronyms -- Notations and Conventions -- List of Figures -- 1 Introduction -- 1.1 Essentials of General Relativity -- 1.1.1 Equivalence Principle and Geodesics -- 1.1.2 Einstein Gravity -- 1.2 Brief Review of Black Hole History -- 1.2.1 First Five Decades: Finding Solutions and Classic Analyses -- 1.2.2 Black Holes Through Observations -- 1.2.3 Black Holes as Thermodynamical Systems -- 1.3 Gravitational Collapse in Stars -- 1.3.1 Core Collapse Supernova and Black Hole Formation -- 1.3.2 Estimating the Chandrasekhar Mass -- 1.4 Different Schools of Thought on Black Holes -- 1.4.1 GR School -- 1.4.2 HEP School -- 1.4.3 Quantum Information School -- 2 Black Hole Solutions and Basic Properties -- 2.1 Schwarzschild Metric, Basic Facts, and Analyses -- 2.1.1 Symmetries and Killing Vectors -- 2.1.2 Flamm Diagram -- 2.1.3 Singularities, Asymptotic, and Near Horizon Behavior -- 2.1.4 ADM Mass and Angular Momentum -- 2.1.5 Infinite Redshift Surface -- 2.2 Particle Probes and Geodesics -- 2.2.1 Null Geodesics -- 2.2.2 Timelike Geodesics and Particle Orbits -- 2.2.3 Eddington-Finkelstein Coordinates -- 2.3 Maximal Extensions and Causal Diagrams -- 2.3.1 Geodesic Completeness and Maximal Analytic Extension -- 2.3.2 Kruskal Coordinates for Schwarzschild Geometry -- 2.3.3 Structure of Lightcones and Preliminary Notion of Horizon -- 2.3.4 Carter-Penrose Causal Diagrams -- 2.3.5 Realistic Black Holes and Wormholes -- 2.4 Einstein-Maxwell Theory and Reissner-Nordström Black Holes -- 2.5 Kerr Solution and Its Basic Analysis -- 2.5.1 Basic Properties of Kerr Black Hole -- 2.5.2 Geodesics of Kerr Geometry -- 2.6 Black Holes in (A)dS Backgrounds -- 2.6.1 Schwarzschild-dS Black Holes -- 2.6.2 Schwarzschild-AdS and Topological Black Holes.
2.7 Plebanski-Demianski Black Holes -- 2.8 Vaidya Metric as Example for Non-stationary Black Holes -- 3 Formal Definitions and Classic Theorems -- 3.1 Mathematical Definitions of Black Holes and Horizons -- 3.1.1 Killing Horizon and Surface Gravity -- 3.1.2 Event Horizon and Mathematical Black Hole Definition -- 3.1.3 Apparent Horizons and Trapped Surfaces -- 3.1.4 Cauchy Horizons and Predictability -- 3.1.5 Other Horizon Definitions -- 3.2 Classic Conjectures and Theorems -- 3.2.1 Raychaudhuri Equation -- 3.2.2 Classical Energy Conditions -- 3.2.3 Singularity Theorems -- 3.2.4 Asymptotic Flatness -- 3.2.5 Horizon Theorems -- 3.2.6 Uniqueness Theorems -- 3.2.7 Cosmic Censorship Conjecture -- 3.3 Optical Focusing Equation and Area Theorem (2nd Law) -- 4 Probing Black Holes, Their Formation and Stability -- 4.1 General Remarks on Black Hole Observations -- 4.2 Black Hole Photon-Sphere, Shadows, and Images -- 4.3 Penrose Process, Super-Radiance, and Black Hole Mining -- 4.4 Gravitational Waves and Black Hole Mergers -- 4.5 Accretion Disk Physics -- 4.6 Black Hole Formation in Shock-Wave Collisions -- 4.7 Black Hole Perturbations and Linear Stability -- 4.7.1 Quasi-normal Modes -- 4.7.2 Late-Time Tails and Linearized Stability -- 4.7.3 Perturbative Aspects of Black Hole Binaries -- 4.8 Gravitational Collapse and Non-linear Stability -- 4.8.1 Critical Collapse and Choptuik Exponent -- 4.8.2 On Non-linear Stability of Black Hole Solutions -- 5 Black Hole Charges and Thermodynamics -- 5.1 Introduction to Systematic Methods for Charge Computation -- 5.2 Komar Charges -- 5.3 Solution Phase Space Method -- 5.3.1 Solution Space Is a Phase Space -- 5.3.2 Exact Symmetries and the Associated Charges -- 5.4 Entropy as a Conserved Charge -- 5.4.1 Entropy as a Noether Charge -- 5.4.2 Entropy and Solution Phase Space Method. 5.4.3 Entropy in Cases Involving Gauge Fields -- 5.5 Four Laws of Black Hole Thermodynamics -- 5.5.1 Zeroth Law -- 5.5.2 First Law and Its Derivation -- 5.5.3 Second Law and Its Generalizations -- 5.5.4 Third Law and Extremal Black Holes -- 6 Semiclassical Aspects of Black Holes -- 6.1 Variational Principle -- 6.1.1 Gibbons-Hawking-York Boundary Term -- 6.1.2 Brown-York Stress Tensor -- 6.2 Quantization on Black Hole Backgrounds -- 6.3 Unruh Effect -- 6.3.1 Unruh Vacuum State -- 6.3.2 Unruh Temperature, Bogoliubov Transformations -- 6.3.3 Unruh Temperature, Euclidean Field Theory Analysis -- 6.3.4 Discussion -- 6.4 Hawking Effect -- 6.4.1 Heuristics of Hawking Effect from Vacuum Fluctuations -- 6.4.2 Hawking Temperature from Euclidean Continuation -- 6.4.3 Hawking Radiation from Ray-Tracing -- 6.4.4 Hawking Radiation from Anomalies -- 6.4.5 Greybody Factors -- 6.4.6 Discussion -- 6.5 Black Hole Entropy and Alternative Derivations -- 6.5.1 Euclidean Effective Action and Gibbons-Hawking Derivation -- 6.5.2 Entropy Bounds -- 6.6 Parikh-Wilczek Tunneling -- 6.6.1 Painlevé Coordinates -- 6.6.2 Painlevé-Parikh-Wilczek Vacuum -- 6.6.3 Discussion of Parikh-Wilczek Tunneling -- 6.7 Black Hole Evaporation -- 6.8 Membrane Paradigm -- 6.8.1 Membrane Action and Dynamics, Classical Analysis -- 6.8.2 Membrane Action, Semiclassical Analysis -- 6.9 Information Puzzle and Apparent Loss of Unitarity -- 7 Gravity and Black Holes in Diverse Dimensions -- 7.1 Why Gravity in Lower Dimensions? -- 7.2 Gravity in Three Dimensions -- 7.2.1 BTZ Black Holes and Bañados Geometries -- 7.2.2 Chern-Simons Formulation -- 7.2.3 Canonical Boundary Charges -- 7.2.4 Alternative Boundary Conditions to Brown-Henneaux -- 7.2.5 Beyond AdS3 Einstein Gravity -- 7.3 Gravity in Two Dimensions -- 7.3.1 Jackiw-Teitelboim Model -- 7.3.2 Generic Dilaton Gravity -- 7.3.3 Gauge Theoretic Formulation. 7.3.4 All Classical Solutions, Locally and Globally -- 7.4 Why Gravity in Higher Dimensions? -- 7.5 Higher-Dimensional Black Hole/Ring/Brane Solutions -- 7.5.1 Tangherlini Solution -- 7.5.2 Myers-Perry Black Holes -- 7.5.3 Five-Dimensional Black Ring Solution -- 7.5.4 Asymptotic AdS Vacuum Black Hole Solutions -- 7.5.5 Black Branes -- 7.6 Black Holes in Large Number of Dimensions -- 8 Aspects of Holography -- 8.1 Basics of Holography -- 8.1.1 AdS/CFT, the Precise Statement -- 8.1.2 Gravity in Anti-De Sitter Space -- 8.1.3 Holographic Renormalization -- 8.1.4 Holographic Correlation Functions -- 8.2 Holography and Quantum Information -- 8.3 AdS Black Holes and Holography -- 8.3.1 Black Holes as Thermal States -- 8.3.2 Hawking-Page Phase Transition -- 8.3.3 Eternal Black Holes -- 8.4 Asymptotic Symmetries -- 8.5 Soft Hair and Near Horizon Symmetries -- 8.6 Extremal Black Holes and Attractor Mechanism -- 8.6.1 Symmetry Enhancement -- 8.6.2 Attractor Mechanism -- 8.7 Kerr/CFT and Related Topics -- 8.8 Summary and Outlook -- Further Reading -- 9 Quantum Aspects of Black Holes -- 9.1 Black Holes and Quantum Gravity -- 9.2 Black Hole Complementarity, Firewalls, Page Curve and Islands -- 9.3 Black Holes in String Theory -- 9.3.1 D1-D5-P System -- 9.3.2 Breckenridge-Myers-Peet-Vafa Solution -- 9.4 Microstate Counting -- 9.4.1 Microstate Counting for BTZ Black Holes -- 9.4.2 Microstate Counting for D1-D5-P and Breckenridge-Myers-Peet-Vafa Black Hole -- 9.5 Microstate Identification, Fuzzball and Fluffball Proposals -- 9.5.1 Fuzzball Proposal, Microstate Geometries -- 9.5.2 Soft Hair Proposal and Its Fluffball Realization -- 9.6 Information Puzzle and AdS/CFT -- 10 Outlook -- 10.1 Summary of the Book -- 10.2 Open Conceptual Issues -- 10.3 Observational Prospects -- A Variational Identities -- B p-Forms -- C Cartan Formulation -- Exercises. D Teukolsky Equation -- D.1 Newman-Penrose Formalism Applied to Kerr -- D.2 Teukolsky Master Equation as Heun Equation -- D.3 Remarks on the Teukolsky Equation for Vanishing Spin -- Exercises -- E Basics of QFT in Curved Spacetime -- Exercises -- F ADM 3+1 Decomposition -- Exercises -- G Covariant Phase Space Formalism -- Exercises -- H More on Membrane Paradigm -- Exercises -- I String Theory Low Energy Effective Actions -- Exercises -- J Hints to Some Selected Exercises -- Exercises of Chapter 1摥映數爠eflinkchap:intro11 -- Exercises of Chapter 2摥映數爠eflinkchap:basics22 -- Exercises of Chapter 3摥映數爠eflinkchap:advancedspsconcepts33 -- Exercises of Chapter 4摥映數爠eflinkchap:classicalspsaspects44 -- Exercises of Chapter 5摥映數爠eflinkchap:chargesspsthermo55 -- Exercises of Chapter 6摥映數爠eflinkchap:seminclassical66 -- Exercises of Chapter 7摥映數爠eflinkchap:expert77 -- Exercises of Chapter chap:holography -- Exercises of Chapter chap:quantum -- Exercises of Appendix A -- Exercises of Appendix B -- Exercises of Appendix C -- Exercises of Appendix D -- Exercises of Appendix E -- Exercises of Appendix F -- Exercises of Appendix G -- Exercises of Appendix H -- Exercises of Appendix I -- References. |
Record Nr. | UNINA-9910629278103321 |
Grumiller Daniel | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|