Nonlinear Industrial Control Systems : Optimal Polynomial Systems and State-Space Approach / / by Michael J. Grimble, Paweł Majecki
| Nonlinear Industrial Control Systems : Optimal Polynomial Systems and State-Space Approach / / by Michael J. Grimble, Paweł Majecki |
| Autore | Grimble Michael J |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | London : , : Springer London : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (778 pages) |
| Disciplina | 629.8312 |
| Soggetto topico |
Automatic control
Industrial engineering Production engineering Automotive engineering Chemical engineering Calculus of variations Control and Systems Theory Industrial and Production Engineering Automotive Engineering Industrial Chemistry/Chemical Engineering Calculus of Variations and Optimal Control; Optimization |
| ISBN | 1-4471-7457-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I: Background -- Introduction to Nonlinear Systems -- Nonlinear Systems Modelling and Identification -- Part II: Polynomial Systems -- Introduction to Nonlinear Generalized Minimum Variance Control -- Nonlinear Generalized Minimum Variance Control Design Issues -- Introduction to Factorised NGMV Nonlinear Controls -- H-infinity Robust Control for Nonlinear Systems -- Design Procedures in the Presence of Saturation and Other Nonlinearities -- Part III: State-space Systems -- Space Approach to NGMV Control -- Design Issues and NGMV Predictive Control -- Basic and Factorised NGMV Control of Continuous-time Systems -- Part IV: Nonlinear System Benchmarking Nonlinear Controls -- Dual Nonlinear Estimation Problems -- Neural Networks, Fuzzy Control and Learning -- Part V: Industrial Applications -- Nonlinear Industrial Process Control Applications -- Nonlinear Automotive, Aerospace and Marine Applications. |
| Record Nr. | UNINA-9910483841203321 |
Grimble Michael J
|
||
| London : , : Springer London : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Robust industrial control systems [[electronic resource] ] : optimal design approach for polynomial systems / / Michael J. Grimble
| Robust industrial control systems [[electronic resource] ] : optimal design approach for polynomial systems / / Michael J. Grimble |
| Autore | Grimble Michael J |
| Pubbl/distr/stampa | Chichester ; ; Hoboken, NJ, : Wiley, c2006 |
| Descrizione fisica | 1 online resource (700 p.) |
| Disciplina |
629.8312
670.42/7 670.427 |
| Soggetto topico | Process control - Automation |
| Soggetto genere / forma | Electronic books. |
| ISBN |
0-470-02075-X
1-280-44874-1 9786610448746 0-470-02074-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Robust Industrial Control Systems; Contents; Preface; Acknowledgements; 1 Introduction to Optimal and Robust Control; 1.1 Introduction; 1.1.1 Optimality, Feedback and Robustness; 1.1.2 High-integrity and Fault-tolerant Control Systems; 1.1.3 Self-healing Control Systems; 1.1.4 Fault Monitoring and Detection; 1.1.5 Adaptive versus Robust Control; 1.1.6 Artificial Intelligence, Neural Networks and Fuzzy Control; 1.1.7 Discrete-time Systems; 1.2 The H2 and H-infinity Spaces and Norms; 1.2.1 Graphical Interpretation of the H-infiinity Norm
1.2.2 Terms Used in H-infinity Robust Control Systems Design1.3 Introduction to H-infinity Control Design; 1.3.1 Properties of H-infinity Robust Control Design; 1.3.2 Comparison of H-infinity and H2/LQG Controllers; 1.3.3 Relationships between Classical Design and H-infinity Robust Control; 1.3.4 H2 and H-infinity Design and Relationship to PID Control; 1.3.5 H-infinity Polynomial Systems Synthesis Theory; 1.4 State-space Modelling and Synthesis Theory; 1.4.1 State-space Solution of Discrete-time H-infinity Control Problem; 1.4.2 H-infinity Control Design Objectives 1.4.3 State-feedback Control Solution1.4.4 State-feedback Control Problem: Cross-product Costing Case; 1.4.5 State-space Solution of Discrete-time H-infinity Filtering Problem; 1.4.6 Bounded Real Lemma; 1.4.7 Output Feedback H-infinity Control Problem; 1.5 Introduction to H2 or LQG Polynomial Synthesis; 1.5.1 System Description; 1.5.2 Cost Function and Solution; 1.5.3 Minimisation of the Performance Criterion; 1.5.4 Solution of the Diophantine Equations and Stability; 1.5.5 H2 /LQG Design Examples; 1.6 Benchmarking; 1.6.1 Restricted Structure Benchmarking 2.3.1 Solution of the Dual-criterion Minimisation Problem2.3.2 Theorem Summarising LQG Controller; 2.3.3 Remarks on the Equations and Solution; 2.3.4 Design Guidelines; 2.3.5 Controller Implementation; 2.3.6 LQG Ship-steering Autopilot Application; 2.4 LQG Controller with Robust Weighting Function; 2.4.1 Youla Parameterisation; 2.4.2 Cost Function with Robust Weighting Function; 2.4.3 Solution of the Dual-criterion Problem with Robust Weighting; 2.4.4 Summary of H2 /LQG Synthesis Problem with Robust Weighting; 2.4.5 Comments on the Solution; 2.5 Introduction to the Standard System Model 2.5.1 Standard System Model |
| Record Nr. | UNINA-9910143739803321 |
Grimble Michael J
|
||
| Chichester ; ; Hoboken, NJ, : Wiley, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Robust industrial control systems [[electronic resource] ] : optimal design approach for polynomial systems / / Michael J. Grimble
| Robust industrial control systems [[electronic resource] ] : optimal design approach for polynomial systems / / Michael J. Grimble |
| Autore | Grimble Michael J |
| Pubbl/distr/stampa | Chichester ; ; Hoboken, NJ, : Wiley, c2006 |
| Descrizione fisica | 1 online resource (700 p.) |
| Disciplina |
629.8312
670.42/7 670.427 |
| Soggetto topico | Process control - Automation |
| ISBN |
0-470-02075-X
1-280-44874-1 9786610448746 0-470-02074-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Robust Industrial Control Systems; Contents; Preface; Acknowledgements; 1 Introduction to Optimal and Robust Control; 1.1 Introduction; 1.1.1 Optimality, Feedback and Robustness; 1.1.2 High-integrity and Fault-tolerant Control Systems; 1.1.3 Self-healing Control Systems; 1.1.4 Fault Monitoring and Detection; 1.1.5 Adaptive versus Robust Control; 1.1.6 Artificial Intelligence, Neural Networks and Fuzzy Control; 1.1.7 Discrete-time Systems; 1.2 The H2 and H-infinity Spaces and Norms; 1.2.1 Graphical Interpretation of the H-infiinity Norm
1.2.2 Terms Used in H-infinity Robust Control Systems Design1.3 Introduction to H-infinity Control Design; 1.3.1 Properties of H-infinity Robust Control Design; 1.3.2 Comparison of H-infinity and H2/LQG Controllers; 1.3.3 Relationships between Classical Design and H-infinity Robust Control; 1.3.4 H2 and H-infinity Design and Relationship to PID Control; 1.3.5 H-infinity Polynomial Systems Synthesis Theory; 1.4 State-space Modelling and Synthesis Theory; 1.4.1 State-space Solution of Discrete-time H-infinity Control Problem; 1.4.2 H-infinity Control Design Objectives 1.4.3 State-feedback Control Solution1.4.4 State-feedback Control Problem: Cross-product Costing Case; 1.4.5 State-space Solution of Discrete-time H-infinity Filtering Problem; 1.4.6 Bounded Real Lemma; 1.4.7 Output Feedback H-infinity Control Problem; 1.5 Introduction to H2 or LQG Polynomial Synthesis; 1.5.1 System Description; 1.5.2 Cost Function and Solution; 1.5.3 Minimisation of the Performance Criterion; 1.5.4 Solution of the Diophantine Equations and Stability; 1.5.5 H2 /LQG Design Examples; 1.6 Benchmarking; 1.6.1 Restricted Structure Benchmarking 2.3.1 Solution of the Dual-criterion Minimisation Problem2.3.2 Theorem Summarising LQG Controller; 2.3.3 Remarks on the Equations and Solution; 2.3.4 Design Guidelines; 2.3.5 Controller Implementation; 2.3.6 LQG Ship-steering Autopilot Application; 2.4 LQG Controller with Robust Weighting Function; 2.4.1 Youla Parameterisation; 2.4.2 Cost Function with Robust Weighting Function; 2.4.3 Solution of the Dual-criterion Problem with Robust Weighting; 2.4.4 Summary of H2 /LQG Synthesis Problem with Robust Weighting; 2.4.5 Comments on the Solution; 2.5 Introduction to the Standard System Model 2.5.1 Standard System Model |
| Record Nr. | UNINA-9910830171903321 |
Grimble Michael J
|
||
| Chichester ; ; Hoboken, NJ, : Wiley, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Robust industrial control systems : optimal design approach for polynomial systems / / Michael J. Grimble
| Robust industrial control systems : optimal design approach for polynomial systems / / Michael J. Grimble |
| Autore | Grimble Michael J |
| Pubbl/distr/stampa | Chichester ; ; Hoboken, NJ, : Wiley, c2006 |
| Descrizione fisica | 1 online resource (700 p.) |
| Disciplina | 670.42/7 |
| Soggetto topico | Process control - Automation |
| ISBN |
9786610448746
9780470020753 047002075X 9781280448744 1280448741 9780470020746 0470020741 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Robust Industrial Control Systems; Contents; Preface; Acknowledgements; 1 Introduction to Optimal and Robust Control; 1.1 Introduction; 1.1.1 Optimality, Feedback and Robustness; 1.1.2 High-integrity and Fault-tolerant Control Systems; 1.1.3 Self-healing Control Systems; 1.1.4 Fault Monitoring and Detection; 1.1.5 Adaptive versus Robust Control; 1.1.6 Artificial Intelligence, Neural Networks and Fuzzy Control; 1.1.7 Discrete-time Systems; 1.2 The H2 and H-infinity Spaces and Norms; 1.2.1 Graphical Interpretation of the H-infiinity Norm
1.2.2 Terms Used in H-infinity Robust Control Systems Design1.3 Introduction to H-infinity Control Design; 1.3.1 Properties of H-infinity Robust Control Design; 1.3.2 Comparison of H-infinity and H2/LQG Controllers; 1.3.3 Relationships between Classical Design and H-infinity Robust Control; 1.3.4 H2 and H-infinity Design and Relationship to PID Control; 1.3.5 H-infinity Polynomial Systems Synthesis Theory; 1.4 State-space Modelling and Synthesis Theory; 1.4.1 State-space Solution of Discrete-time H-infinity Control Problem; 1.4.2 H-infinity Control Design Objectives 1.4.3 State-feedback Control Solution1.4.4 State-feedback Control Problem: Cross-product Costing Case; 1.4.5 State-space Solution of Discrete-time H-infinity Filtering Problem; 1.4.6 Bounded Real Lemma; 1.4.7 Output Feedback H-infinity Control Problem; 1.5 Introduction to H2 or LQG Polynomial Synthesis; 1.5.1 System Description; 1.5.2 Cost Function and Solution; 1.5.3 Minimisation of the Performance Criterion; 1.5.4 Solution of the Diophantine Equations and Stability; 1.5.5 H2 /LQG Design Examples; 1.6 Benchmarking; 1.6.1 Restricted Structure Benchmarking 2.3.1 Solution of the Dual-criterion Minimisation Problem2.3.2 Theorem Summarising LQG Controller; 2.3.3 Remarks on the Equations and Solution; 2.3.4 Design Guidelines; 2.3.5 Controller Implementation; 2.3.6 LQG Ship-steering Autopilot Application; 2.4 LQG Controller with Robust Weighting Function; 2.4.1 Youla Parameterisation; 2.4.2 Cost Function with Robust Weighting Function; 2.4.3 Solution of the Dual-criterion Problem with Robust Weighting; 2.4.4 Summary of H2 /LQG Synthesis Problem with Robust Weighting; 2.4.5 Comments on the Solution; 2.5 Introduction to the Standard System Model 2.5.1 Standard System Model |
| Record Nr. | UNINA-9911019192503321 |
Grimble Michael J
|
||
| Chichester ; ; Hoboken, NJ, : Wiley, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||