Essentials of multiphase flow and transport in porous media [[electronic resource] /] / George F. Pinder, William G. Gray |
Autore | Pinder George Francis <1942-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2008 |
Descrizione fisica | 1 online resource (273 p.) |
Disciplina | 624.1/513 |
Altri autori (Persone) | GrayWilliam G <1948-> (William Guerin) |
Soggetto topico |
Porous materials - Fluid dynamics - Mathematical models
Multiphase flow - Mathematical models |
ISBN |
1-281-75203-7
9786611752033 0-470-38080-2 0-470-38079-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ESSENTIALS OF MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA; CONTENTS; Preface; Acknowledgments; 1 Setting the Stage; 1.1 Introduction; 1.2 Phases and Porous Media; 1.3 Grain and Pore Size Distributions; 1.4 The Concept of Saturation; 1.5 The Concept of Pressure; 1.6 Surface Tension Considerations; 1.7 Concept of Concentration; 1.8 Summary; 1.9 Exercises; Bibliography; 2 Mass Conservation Equations; 2.1 Introduction; 2.2 Microscale Mass Conservation; 2.3 Integral Forms of Mass Conservation; 2.4 Integral Theorems; 2.4.1 Divergence Theorem; 2.4.2 Transport Theorem
2.5 Point Forms of Mass Conservation2.6 The Macroscale Perspective; 2.6.1 The Representative Elementary Volume; 2.6.2 Global and Local Coordinate Systems; 2.6.3 Macroscopic Variables; 2.6.4 Definitions of Macroscale Quantities; 2.6.5 Summary of Macroscale Quantities; 2.7 The Averaging Theorems; 2.7.1 Spatial Averaging Theorem; 2.7.2 Temporal Averaging Theorem; 2.8 Macroscale Mass Conservation; 2.8.1 Macroscale Point Forms; 2.8.2 Integral Forms; 2.9 Applications; 2.9.1 Integral Analysis; 2.9.2 Point Analysis; 2.10 Summary; 2.11 Exercises; Bibliography; 3 Flow Equations; 3.1 Introduction 3.2 Darcy's Experiments3.3 Fluid Properties; 3.4 Equations of State for Fluids; 3.4.1 Mass Fraction; 3.4.2 Mass Density and Pressure; 3.4.3 Fluid Viscosity; 3.5 Hydraulic Potential; 3.5.1 Hydrostatic Force and Hydraulic Head; 3.5.2 Derivatives of Hydraulic Head; 3.6 Single-Phase Fluid Flow; 3.6.1 Darcy's Law; 3.6.2 Hydraulic Conductivity and Permeability; 3.6.3 Derivation of Groundwater Flow Equation; 3.6.4 Recapitulation of the Derivation; 3.6.5 Initial and Boundary Conditions; 3.6.6 Two-Dimensional Flow; 3.7 Two-Phase Immiscible Flow; 3.7.1 Derivation of Flow Equations 3.7.2 Observations on the p(c)-s(w) Relationship3.7.3 Formulas for the p(c)-s(w) Relationship; 3.7.4 Observations of the k(α)(rel)-s(w) Relationship; 3.7.5 Formulas for the k(α)(rel)-s(w) Relation; 3.7.6 Special Cases of Multiphase Flow; 3.8 The Buckley-Leverett Analysis; 3.8.1 Fractional Flow; 3.8.2 Derivation of the Buckley-Leverett Equation; 3.8.3 Solution of the Buckley-Leverett Equation; 3.9 Summary; 3.10 Exercises; Bibliography; 4 Mass Transport Equations; 4.1 Introduction; 4.2 Velocity in the Species Transport Equations; 4.2.1 Direct Approach; 4.2.2 Rigorous Approach 4.2.3 Distribution Approach4.2.4 Summary; 4.3 Closure Relations for the Dispersion Vector; 4.4 Chemical Reaction Rates; 4.5 Interphase Transfer Terms; 4.5.1 Kinetic Formulation; 4.5.2 Equilibrium Formulation; 4.5.3 Summary: Kinetic vs. Equilibrium Formulations; 4.6 Initial and Boundary Conditions; 4.7 Conclusion; 4.8 Exercises; Bibliography; 5 Simulation; 5.1 1-D Simulation of Air-Water Flow; 5.1.1 Drainage in a Homogeneous Soil; 5.1.2 Drainage in a Heterogeneous Soil; 5.1.3 Imbibition in Homogeneous Soil; 5.2 1-D Simulation of DNAPL-Water Flow 5.2.1 Primary DNAPL Imbibition in Homogeneous Soil |
Record Nr. | UNINA-9910144135503321 |
Pinder George Francis <1942-> | ||
Hoboken, N.J., : Wiley, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Essentials of multiphase flow and transport in porous media / / George F. Pinder, William G. Gray |
Autore | Pinder George Francis <1942-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2008 |
Descrizione fisica | 1 online resource (273 p.) |
Disciplina | 624.1/513 |
Altri autori (Persone) | GrayWilliam G <1948-> (William Guerin) |
Soggetto topico |
Porous materials - Fluid dynamics - Mathematical models
Multiphase flow - Mathematical models |
ISBN |
1-281-75203-7
9786611752033 0-470-38080-2 0-470-38079-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ESSENTIALS OF MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA; CONTENTS; Preface; Acknowledgments; 1 Setting the Stage; 1.1 Introduction; 1.2 Phases and Porous Media; 1.3 Grain and Pore Size Distributions; 1.4 The Concept of Saturation; 1.5 The Concept of Pressure; 1.6 Surface Tension Considerations; 1.7 Concept of Concentration; 1.8 Summary; 1.9 Exercises; Bibliography; 2 Mass Conservation Equations; 2.1 Introduction; 2.2 Microscale Mass Conservation; 2.3 Integral Forms of Mass Conservation; 2.4 Integral Theorems; 2.4.1 Divergence Theorem; 2.4.2 Transport Theorem
2.5 Point Forms of Mass Conservation2.6 The Macroscale Perspective; 2.6.1 The Representative Elementary Volume; 2.6.2 Global and Local Coordinate Systems; 2.6.3 Macroscopic Variables; 2.6.4 Definitions of Macroscale Quantities; 2.6.5 Summary of Macroscale Quantities; 2.7 The Averaging Theorems; 2.7.1 Spatial Averaging Theorem; 2.7.2 Temporal Averaging Theorem; 2.8 Macroscale Mass Conservation; 2.8.1 Macroscale Point Forms; 2.8.2 Integral Forms; 2.9 Applications; 2.9.1 Integral Analysis; 2.9.2 Point Analysis; 2.10 Summary; 2.11 Exercises; Bibliography; 3 Flow Equations; 3.1 Introduction 3.2 Darcy's Experiments3.3 Fluid Properties; 3.4 Equations of State for Fluids; 3.4.1 Mass Fraction; 3.4.2 Mass Density and Pressure; 3.4.3 Fluid Viscosity; 3.5 Hydraulic Potential; 3.5.1 Hydrostatic Force and Hydraulic Head; 3.5.2 Derivatives of Hydraulic Head; 3.6 Single-Phase Fluid Flow; 3.6.1 Darcy's Law; 3.6.2 Hydraulic Conductivity and Permeability; 3.6.3 Derivation of Groundwater Flow Equation; 3.6.4 Recapitulation of the Derivation; 3.6.5 Initial and Boundary Conditions; 3.6.6 Two-Dimensional Flow; 3.7 Two-Phase Immiscible Flow; 3.7.1 Derivation of Flow Equations 3.7.2 Observations on the p(c)-s(w) Relationship3.7.3 Formulas for the p(c)-s(w) Relationship; 3.7.4 Observations of the k(α)(rel)-s(w) Relationship; 3.7.5 Formulas for the k(α)(rel)-s(w) Relation; 3.7.6 Special Cases of Multiphase Flow; 3.8 The Buckley-Leverett Analysis; 3.8.1 Fractional Flow; 3.8.2 Derivation of the Buckley-Leverett Equation; 3.8.3 Solution of the Buckley-Leverett Equation; 3.9 Summary; 3.10 Exercises; Bibliography; 4 Mass Transport Equations; 4.1 Introduction; 4.2 Velocity in the Species Transport Equations; 4.2.1 Direct Approach; 4.2.2 Rigorous Approach 4.2.3 Distribution Approach4.2.4 Summary; 4.3 Closure Relations for the Dispersion Vector; 4.4 Chemical Reaction Rates; 4.5 Interphase Transfer Terms; 4.5.1 Kinetic Formulation; 4.5.2 Equilibrium Formulation; 4.5.3 Summary: Kinetic vs. Equilibrium Formulations; 4.6 Initial and Boundary Conditions; 4.7 Conclusion; 4.8 Exercises; Bibliography; 5 Simulation; 5.1 1-D Simulation of Air-Water Flow; 5.1.1 Drainage in a Homogeneous Soil; 5.1.2 Drainage in a Heterogeneous Soil; 5.1.3 Imbibition in Homogeneous Soil; 5.2 1-D Simulation of DNAPL-Water Flow 5.2.1 Primary DNAPL Imbibition in Homogeneous Soil |
Record Nr. | UNINA-9910814701803321 |
Pinder George Francis <1942-> | ||
Hoboken, N.J., : Wiley, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|