Principles of artificial neural networks [[electronic resource] /] / Daniel Graupe |
Autore | Graupe Daniel |
Edizione | [3rd ed.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, 2013 |
Descrizione fisica | 1 online resource (382 pages) |
Disciplina | 006.32 |
Collana | Advanced series in circuits and systems |
Soggetto topico | Neural networks (Computer science) |
Soggetto genere / forma | Electronic books. |
ISBN | 981-4522-74-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Acknowledgments; Preface to the Third Edition; Preface to the Second Edition; Preface to the First Edition; Contents; Chapter 1. Introduction and Role of Artificial Neural Networks; Chapter 2. Fundamentals of Biological Neural Networks; Chapter 3. Basic Principles of ANNs and Their Early Structures; 3.1. Basic Principles of ANN Design; 3.2. Basic Network Structures; 3.3. The Perceptron's Input-Output Principles; 3.4. The Adaline (ALC); 3.4.1. LMS training of ALC; 3.4.2. Steepest descent training of ALC; Chapter 4. The Perceptron; 4.1. The Basic Structure
4.1.1. Perceptron's activation functions4.2. The Single-Layer Representation Problem; 4.3. The Limitations of the Single-Layer Perceptron; 4.4. Many-Layer Perceptrons; 4.A. Perceptron Case Study: Identifying Autoregressive Parameters of a Signal (AR Time Series Identification); Chapter 5. The Madaline; 5.1. Madaline Training; 5.A. Madaline Case Study: Character Recognition; 5.A.1. Problem statement; 5.A.2. Design of network; 5.A.3. Training of the network; 5.A.4. Results; 5.A.5. Conclusions and observations; 5.A.6. MATLAB source code for implementing MADALINE network Chapter 6. Back Propagation6.1. The Back Propagation Learning Procedure; 6.2. Derivation of the BP Algorithm; 6.3. Modified BP Algorithms; 6.3.1. Introduction of bias into NN; 6.3.2. Incorporating momentum or smoothing to weight adjustment; 6.3.3. Other modification concerning convergence; 6.A. Back Propagation Case Study: Character Recognition; 6.A.1. Introduction; 6.A.2. Network design; 6.A.3. Results; 6.A.4. Discussion and conclusions; 6.A.5. Source Code (C++); 6.B. Back Propagation Case Study: The Exclusive-OR (XOR) Problem (2-Layer BP) 6.C. Back Propagation Case Study: The XOR Problem - 3 Layer BP Network6.D. Average Monthly High and Low Temperature Prediction Using Backpropagation Neural Networks; 6.D.1. Introduction; 6.D.2. Design; 6.D.3. Results; 6.D.4. Conclusion; 6.D.5. Source Code (Matlab); Chapter 7. Hopfield Networks; 7.1. Introduction; 7.2. Binary Hopfield Networks; 7.3. Setting of Weights in Hopfield Nets - Bidirectional Associative Memory (BAM) Principle; 7.4. Walsh Functions; 7.5. Network Stability; 7.6. Summary of the Procedure for Implementing the Hopfield Network; 7.7. Continuous Hopfield Models 7.8. The Continuous Energy (Lyapunov) Function7.A. Hopfield Network Case Study: Character Recognition; 7.A.1. Introduction; 7.A.2. Network design; 7.A.3. Setting of weights; 7.A.4. Testing; 7.A.5. Results and conclusions; 7.A.6. MATALAB source codes; 7.B. Hopfield Network Case Study: Traveling Salesman Problem; 7.B.1. Introduction; 7.B.2. Hopfield neural network design; 7.B.2.1. The energy function; 7.B.2.2. Weight matrix setting; 7.B.2.3. Activation function; 7.B.2.4. The activation function; 7.B.3. Input selection; 7.B.4. Implementation details; 7.B.5. Output results 7.B.6. Concluding discussion |
Record Nr. | UNINA-9910452271503321 |
Graupe Daniel | ||
Singapore ; ; Hackensack, N.J., : World Scientific, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Principles of artificial neural networks / / Daniel Graupe, University of Illinois, Chicago, USA |
Autore | Graupe Daniel |
Edizione | [3rd ed.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, 2013 |
Descrizione fisica | 1 online resource (xviii, 363 pages) : illustrations (some color) |
Disciplina | 006.32 |
Collana | Advanced series in circuits and systems |
Soggetto topico | Neural networks (Computer science) |
ISBN | 981-4522-74-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Acknowledgments; Preface to the Third Edition; Preface to the Second Edition; Preface to the First Edition; Contents; Chapter 1. Introduction and Role of Artificial Neural Networks; Chapter 2. Fundamentals of Biological Neural Networks; Chapter 3. Basic Principles of ANNs and Their Early Structures; 3.1. Basic Principles of ANN Design; 3.2. Basic Network Structures; 3.3. The Perceptron's Input-Output Principles; 3.4. The Adaline (ALC); 3.4.1. LMS training of ALC; 3.4.2. Steepest descent training of ALC; Chapter 4. The Perceptron; 4.1. The Basic Structure
4.1.1. Perceptron's activation functions4.2. The Single-Layer Representation Problem; 4.3. The Limitations of the Single-Layer Perceptron; 4.4. Many-Layer Perceptrons; 4.A. Perceptron Case Study: Identifying Autoregressive Parameters of a Signal (AR Time Series Identification); Chapter 5. The Madaline; 5.1. Madaline Training; 5.A. Madaline Case Study: Character Recognition; 5.A.1. Problem statement; 5.A.2. Design of network; 5.A.3. Training of the network; 5.A.4. Results; 5.A.5. Conclusions and observations; 5.A.6. MATLAB source code for implementing MADALINE network Chapter 6. Back Propagation6.1. The Back Propagation Learning Procedure; 6.2. Derivation of the BP Algorithm; 6.3. Modified BP Algorithms; 6.3.1. Introduction of bias into NN; 6.3.2. Incorporating momentum or smoothing to weight adjustment; 6.3.3. Other modification concerning convergence; 6.A. Back Propagation Case Study: Character Recognition; 6.A.1. Introduction; 6.A.2. Network design; 6.A.3. Results; 6.A.4. Discussion and conclusions; 6.A.5. Source Code (C++); 6.B. Back Propagation Case Study: The Exclusive-OR (XOR) Problem (2-Layer BP) 6.C. Back Propagation Case Study: The XOR Problem - 3 Layer BP Network6.D. Average Monthly High and Low Temperature Prediction Using Backpropagation Neural Networks; 6.D.1. Introduction; 6.D.2. Design; 6.D.3. Results; 6.D.4. Conclusion; 6.D.5. Source Code (Matlab); Chapter 7. Hopfield Networks; 7.1. Introduction; 7.2. Binary Hopfield Networks; 7.3. Setting of Weights in Hopfield Nets - Bidirectional Associative Memory (BAM) Principle; 7.4. Walsh Functions; 7.5. Network Stability; 7.6. Summary of the Procedure for Implementing the Hopfield Network; 7.7. Continuous Hopfield Models 7.8. The Continuous Energy (Lyapunov) Function7.A. Hopfield Network Case Study: Character Recognition; 7.A.1. Introduction; 7.A.2. Network design; 7.A.3. Setting of weights; 7.A.4. Testing; 7.A.5. Results and conclusions; 7.A.6. MATALAB source codes; 7.B. Hopfield Network Case Study: Traveling Salesman Problem; 7.B.1. Introduction; 7.B.2. Hopfield neural network design; 7.B.2.1. The energy function; 7.B.2.2. Weight matrix setting; 7.B.2.3. Activation function; 7.B.2.4. The activation function; 7.B.3. Input selection; 7.B.4. Implementation details; 7.B.5. Output results 7.B.6. Concluding discussion |
Record Nr. | UNINA-9910779986703321 |
Graupe Daniel | ||
Singapore ; ; Hackensack, N.J., : World Scientific, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Principles of artificial neural networks / / Daniel Graupe, University of Illinois, Chicago, USA |
Autore | Graupe Daniel |
Edizione | [3rd ed.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, 2013 |
Descrizione fisica | 1 online resource (xviii, 363 pages) : illustrations (some color) |
Disciplina | 006.32 |
Collana | Advanced series in circuits and systems |
Soggetto topico | Neural networks (Computer science) |
ISBN | 981-4522-74-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Acknowledgments; Preface to the Third Edition; Preface to the Second Edition; Preface to the First Edition; Contents; Chapter 1. Introduction and Role of Artificial Neural Networks; Chapter 2. Fundamentals of Biological Neural Networks; Chapter 3. Basic Principles of ANNs and Their Early Structures; 3.1. Basic Principles of ANN Design; 3.2. Basic Network Structures; 3.3. The Perceptron's Input-Output Principles; 3.4. The Adaline (ALC); 3.4.1. LMS training of ALC; 3.4.2. Steepest descent training of ALC; Chapter 4. The Perceptron; 4.1. The Basic Structure
4.1.1. Perceptron's activation functions4.2. The Single-Layer Representation Problem; 4.3. The Limitations of the Single-Layer Perceptron; 4.4. Many-Layer Perceptrons; 4.A. Perceptron Case Study: Identifying Autoregressive Parameters of a Signal (AR Time Series Identification); Chapter 5. The Madaline; 5.1. Madaline Training; 5.A. Madaline Case Study: Character Recognition; 5.A.1. Problem statement; 5.A.2. Design of network; 5.A.3. Training of the network; 5.A.4. Results; 5.A.5. Conclusions and observations; 5.A.6. MATLAB source code for implementing MADALINE network Chapter 6. Back Propagation6.1. The Back Propagation Learning Procedure; 6.2. Derivation of the BP Algorithm; 6.3. Modified BP Algorithms; 6.3.1. Introduction of bias into NN; 6.3.2. Incorporating momentum or smoothing to weight adjustment; 6.3.3. Other modification concerning convergence; 6.A. Back Propagation Case Study: Character Recognition; 6.A.1. Introduction; 6.A.2. Network design; 6.A.3. Results; 6.A.4. Discussion and conclusions; 6.A.5. Source Code (C++); 6.B. Back Propagation Case Study: The Exclusive-OR (XOR) Problem (2-Layer BP) 6.C. Back Propagation Case Study: The XOR Problem - 3 Layer BP Network6.D. Average Monthly High and Low Temperature Prediction Using Backpropagation Neural Networks; 6.D.1. Introduction; 6.D.2. Design; 6.D.3. Results; 6.D.4. Conclusion; 6.D.5. Source Code (Matlab); Chapter 7. Hopfield Networks; 7.1. Introduction; 7.2. Binary Hopfield Networks; 7.3. Setting of Weights in Hopfield Nets - Bidirectional Associative Memory (BAM) Principle; 7.4. Walsh Functions; 7.5. Network Stability; 7.6. Summary of the Procedure for Implementing the Hopfield Network; 7.7. Continuous Hopfield Models 7.8. The Continuous Energy (Lyapunov) Function7.A. Hopfield Network Case Study: Character Recognition; 7.A.1. Introduction; 7.A.2. Network design; 7.A.3. Setting of weights; 7.A.4. Testing; 7.A.5. Results and conclusions; 7.A.6. MATALAB source codes; 7.B. Hopfield Network Case Study: Traveling Salesman Problem; 7.B.1. Introduction; 7.B.2. Hopfield neural network design; 7.B.2.1. The energy function; 7.B.2.2. Weight matrix setting; 7.B.2.3. Activation function; 7.B.2.4. The activation function; 7.B.3. Input selection; 7.B.4. Implementation details; 7.B.5. Output results 7.B.6. Concluding discussion |
Record Nr. | UNINA-9910821027103321 |
Graupe Daniel | ||
Singapore ; ; Hackensack, N.J., : World Scientific, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Principles of artificial neural networks [[electronic resource] /] / Daniel Graupe |
Autore | Graupe Daniel |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, c2007 |
Descrizione fisica | 1 online resource (320 p.) |
Disciplina | 006.3/2 |
Collana | Advanced series on circuits and systems |
Soggetto topico | Neural networks (Computer science) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-12170-3
9786611121709 981-277-057-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Acknowledgments; Preface to the First Edition; Preface to the Second Edition; Contents; Chapter 1. Introduction and Role of Artificial Neural Networks; Chapter 2. Fundamentals of Biological Neural Networks; Chapter 3. Basic Principles of ANNs and Their Early Structures; Chapter 4. The Perceptron; Chapter 5. The Madaline; Chapter 6. Back Propagation; Chapter 7. Hopeld Networks; Chapter 8. Counter Propagation; Chapter 9. Adaptive Resonance Theory; Chapter 10. The Cognitron and the Neocognitron; Chapter 11. Statistical Training; Chapter 12. Recurrent (Time Cycling) Back Propagation Networks
Chapter 13. Large Scale Memory Storage and Retrieval (LAMSTAR) Network Problems; References; Author Index; Subject Index |
Record Nr. | UNINA-9910450698103321 |
Graupe Daniel | ||
Singapore ; ; Hackensack, N.J., : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Principles of artificial neural networks [[electronic resource] /] / Daniel Graupe |
Autore | Graupe Daniel |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, c2007 |
Descrizione fisica | 1 online resource (320 p.) |
Disciplina | 006.3/2 |
Collana | Advanced series on circuits and systems |
Soggetto topico | Neural networks (Computer science) |
ISBN |
1-281-12170-3
9786611121709 981-277-057-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Acknowledgments; Preface to the First Edition; Preface to the Second Edition; Contents; Chapter 1. Introduction and Role of Artificial Neural Networks; Chapter 2. Fundamentals of Biological Neural Networks; Chapter 3. Basic Principles of ANNs and Their Early Structures; Chapter 4. The Perceptron; Chapter 5. The Madaline; Chapter 6. Back Propagation; Chapter 7. Hopeld Networks; Chapter 8. Counter Propagation; Chapter 9. Adaptive Resonance Theory; Chapter 10. The Cognitron and the Neocognitron; Chapter 11. Statistical Training; Chapter 12. Recurrent (Time Cycling) Back Propagation Networks
Chapter 13. Large Scale Memory Storage and Retrieval (LAMSTAR) Network Problems; References; Author Index; Subject Index |
Record Nr. | UNINA-9910784070603321 |
Graupe Daniel | ||
Singapore ; ; Hackensack, N.J., : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Principles of artificial neural networks / / Daniel Graupe |
Autore | Graupe Daniel |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, c2007 |
Descrizione fisica | 1 online resource (320 p.) |
Disciplina | 006.3/2 |
Collana | Advanced series on circuits and systems |
Soggetto topico | Neural networks (Computer science) |
ISBN |
1-281-12170-3
9786611121709 981-277-057-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Acknowledgments; Preface to the First Edition; Preface to the Second Edition; Contents; Chapter 1. Introduction and Role of Artificial Neural Networks; Chapter 2. Fundamentals of Biological Neural Networks; Chapter 3. Basic Principles of ANNs and Their Early Structures; Chapter 4. The Perceptron; Chapter 5. The Madaline; Chapter 6. Back Propagation; Chapter 7. Hopeld Networks; Chapter 8. Counter Propagation; Chapter 9. Adaptive Resonance Theory; Chapter 10. The Cognitron and the Neocognitron; Chapter 11. Statistical Training; Chapter 12. Recurrent (Time Cycling) Back Propagation Networks
Chapter 13. Large Scale Memory Storage and Retrieval (LAMSTAR) Network Problems; References; Author Index; Subject Index |
Record Nr. | UNINA-9910815601003321 |
Graupe Daniel | ||
Singapore ; ; Hackensack, N.J., : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|