Modelling Potential Crop Growth Processes [[electronic resource] ] : Textbook with Exercises / / by J. Goudriaan, H.H. Van Laar
| Modelling Potential Crop Growth Processes [[electronic resource] ] : Textbook with Exercises / / by J. Goudriaan, H.H. Van Laar |
| Autore | Goudriaan J |
| Edizione | [1st ed. 1994.] |
| Pubbl/distr/stampa | Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 1994 |
| Descrizione fisica | 1 online resource (XII, 239 p.) |
| Disciplina | 580 |
| Collana | Current Issues in Production Ecology |
| Soggetto topico |
Plant science
Botany Ecology Differential equations Plant Sciences Ecology Ordinary Differential Equations |
| ISBN | 94-011-0750-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Introduction -- 1.1 Levels of understanding of crop growth -- 1.2 Growth factors and production situations -- 1.3 CO2 assimilation as a basis -- 1.4 Some general modelling considerations -- 1.5 Outline of the book -- 2 The main seasonal growth pattern -- 2.1 Introduction -- 2.2 The growth phases -- 2.3 Exponential-linear growth: one equation -- 2.4 A special case: rm, cm,p1 and s are constant -- 2.5 Application for variable weather conditions -- 2.6 Generalization on approaching the senescence phase -- 2.7 A term for losses due to maintenance respiration -- 2.8 Additional exercises -- 2.9 Solutions to the exercises -- 2.10 Symbols and acronyms used in Chapter 2 -- 3 Climatic factors -- 3.1 Importance of the diurnal course -- 3.2 The daily progress of the incident global radiation -- 3.3 Temperature -- 3.4 Humidity -- 3.5 Wind speed -- 3.6 Annual temperature course -- 3.7 Additional exercises -- 3.8 Solutions to the exercises -- 3.9 Symbols and acronyms used in Chapter 3 -- 4 Assimilate flow and respiration -- 4.1 Introduction -- 4.2 Growth and respiration -- 4.3 Short-circuiting the assimilate pool on the long-term -- 4.4 Growth respiration and chemical composition -- 4.5 Maintenance respiration -- 4.6 Additional exercises -- 4.7 Solutions to the exercises -- 4.8 Symbols and acronyms used in Chapter 4 -- 5 Development and growth -- 5.1 Introduction -- 5.2 Development stages -- 5.3 Development rate and environmental factors -- 5.4 Distribution of dry matter and development stage -- 5.5 Leaf area growth -- 5.6 Solutions to the exercises -- 5.7 Symbols and acronyms used in Chapter 5 -- 6 Radiation in crops -- 6.1 Introduction -- 6.2 A model crop with black horizontal leaves -- 6.3 Black leaves that are not horizontal -- 6.4 Horizontal leaves that are not black -- 6.5 Scattering leaves, non-horizontal -- 6.6 Scattering by leaves and soil -- 6.7 Distribution of absorption of light over the leaf canopy -- 6.8 Clustering -- 6.9 Additional exercise -- 6.10 Solutions to the exercises -- 6.11 Symbols and acronyms used in Chapter 6 -- 7 Leaf energy balance and transpiration -- 7.1 Introduction -- 7.2 Energy balance of a non-transpiring leaf -- 7.3 Thermal (‘long-wave’) radiation: 3 – 20 ?m -- 7.4 Evaporation from a wet surface -- 7.5 Leaf transpiration -- 7.6 Units of conductance: m s?1 or ?mol m?2 s?1 -- 7.7 Notation with the coupling factor Omega -- 7.8 Additional exercises -- 7.9 Solutions to the exercises -- 7.10 Symbols and acronyms used in Chapter 7 -- 8 Analysis of leaf CO2 assimilation -- 8.1 Introduction -- 8.2 The photosynthesis-light response curve -- 8.3 The light and dark processes in CO2 assimilation -- 8.4 Limitation by low CO2 -- 8.5 Maximal photosynthetic capacity (at both high light and high CO2) -- 8.6 Limitation by low light -- 8.7 The C3 cycle, photorespiration and the CO2 compensation point -- 8.8 Temperature -- 8.9 Additional exercises -- 8.10 Solutions to the exercises -- 8.11 Symbols and acronyms used in Chapter 8 -- References -- Appendix 1 Richards and Gompertz functions -- A1.1 Richards function -- A1.2 Gompertz function -- Appendix 2 Gaussian integration in simulation modelling -- A2.1 Introduction -- A2.2 Canopy photosynthesis -- A2.3 Solution to the exercise -- Appendix 3 SUCROS1 — A crop growth model for potential production -- A3.1 Introduction -- A3.2 Initial conditions -- A3.3 Crop development (Chapter 5) -- A3.6 Carbohydrate production (Chapter 4) -- A3.7 Maintenance (Chapter 4) -- A3.8 Dry matter partitioning (Chapter 5) -- A3.9 Growth of plant organs and translocation (Chapts 4 and 5) -- A3.10 Leaf and ear development (Chapter 5) -- A3.11 Dry matter production -- A3.12 Weather data (Chapter 3) -- A3.13 Carbon balance check (Chapter 4) -- A3.14 Run control -- A3.15 Structure and listing of the model -- A3.16 Definition of the abbreviations used in SUCROS1 -- Appendix 4 SUCROS1 — adapted for soil reflection -- Appendix 5 The FORTRAN Simulation Translator (FST), a simulation language -- A5.1 Introduction -- A5.2 The structure of the model -- A5.3 FST example program simulating logistic growth -- A5.4 Comment lines and FST statements -- A5.5 Rules for FST keywords, variable names and values -- A5.6 Definition of input values of the model (PARAMETER, INCON, CONSTANT, FUNCTION) -- A5.7 Hierarchy of operations in expressions, and the use of FST functions and FORTRAN functions -- A5.8 FST keywords for output (TITLE, PRINT, OUTPUT) -- A5.9 FST run control keywords (TRANSLATION_GENERAL, TRANSLATION_FSE, TIMER, FINISH) -- A5.10 Weather data in FST programs (WEATHER) -- A5.11 Rerun facility, the END keyword -- A5.12 FORTRAN subroutines with FST, the STOP keyword -- Appendix 6 Derivation of the equations for exponential extinction of horizontal, non-black leaves (after Goudriaan (1977), pg 13–14). |
| Record Nr. | UNINA-9910480522103321 |
Goudriaan J
|
||
| Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 1994 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Modelling potential crop growth processes : textbook with exercises / / J. Goudriaan, H.H. Van Laar
| Modelling potential crop growth processes : textbook with exercises / / J. Goudriaan, H.H. Van Laar |
| Autore | Goudriaan J |
| Edizione | [First edition 1994.] |
| Pubbl/distr/stampa | Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 1994 |
| Descrizione fisica | 1 online resource (XII, 239 pages) |
| Disciplina | 580 |
| Collana | Current Issues in Production Ecology |
| Soggetto topico |
Crops - Growth - Computer simulation
Crops - Physiology - Computer simulation |
| ISBN | 94-011-0750-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Introduction -- 1.1 Levels of understanding of crop growth -- 1.2 Growth factors and production situations -- 1.3 CO2 assimilation as a basis -- 1.4 Some general modelling considerations -- 1.5 Outline of the book -- 2 The main seasonal growth pattern -- 2.1 Introduction -- 2.2 The growth phases -- 2.3 Exponential-linear growth: one equation -- 2.4 A special case: rm, cm,p1 and s are constant -- 2.5 Application for variable weather conditions -- 2.6 Generalization on approaching the senescence phase -- 2.7 A term for losses due to maintenance respiration -- 2.8 Additional exercises -- 2.9 Solutions to the exercises -- 2.10 Symbols and acronyms used in Chapter 2 -- 3 Climatic factors -- 3.1 Importance of the diurnal course -- 3.2 The daily progress of the incident global radiation -- 3.3 Temperature -- 3.4 Humidity -- 3.5 Wind speed -- 3.6 Annual temperature course -- 3.7 Additional exercises -- 3.8 Solutions to the exercises -- 3.9 Symbols and acronyms used in Chapter 3 -- 4 Assimilate flow and respiration -- 4.1 Introduction -- 4.2 Growth and respiration -- 4.3 Short-circuiting the assimilate pool on the long-term -- 4.4 Growth respiration and chemical composition -- 4.5 Maintenance respiration -- 4.6 Additional exercises -- 4.7 Solutions to the exercises -- 4.8 Symbols and acronyms used in Chapter 4 -- 5 Development and growth -- 5.1 Introduction -- 5.2 Development stages -- 5.3 Development rate and environmental factors -- 5.4 Distribution of dry matter and development stage -- 5.5 Leaf area growth -- 5.6 Solutions to the exercises -- 5.7 Symbols and acronyms used in Chapter 5 -- 6 Radiation in crops -- 6.1 Introduction -- 6.2 A model crop with black horizontal leaves -- 6.3 Black leaves that are not horizontal -- 6.4 Horizontal leaves that are not black -- 6.5 Scattering leaves, non-horizontal -- 6.6 Scattering by leaves and soil -- 6.7 Distribution of absorption of light over the leaf canopy -- 6.8 Clustering -- 6.9 Additional exercise -- 6.10 Solutions to the exercises -- 6.11 Symbols and acronyms used in Chapter 6 -- 7 Leaf energy balance and transpiration -- 7.1 Introduction -- 7.2 Energy balance of a non-transpiring leaf -- 7.3 Thermal (‘long-wave’) radiation: 3 – 20 ?m -- 7.4 Evaporation from a wet surface -- 7.5 Leaf transpiration -- 7.6 Units of conductance: m s?1 or ?mol m?2 s?1 -- 7.7 Notation with the coupling factor Omega -- 7.8 Additional exercises -- 7.9 Solutions to the exercises -- 7.10 Symbols and acronyms used in Chapter 7 -- 8 Analysis of leaf CO2 assimilation -- 8.1 Introduction -- 8.2 The photosynthesis-light response curve -- 8.3 The light and dark processes in CO2 assimilation -- 8.4 Limitation by low CO2 -- 8.5 Maximal photosynthetic capacity (at both high light and high CO2) -- 8.6 Limitation by low light -- 8.7 The C3 cycle, photorespiration and the CO2 compensation point -- 8.8 Temperature -- 8.9 Additional exercises -- 8.10 Solutions to the exercises -- 8.11 Symbols and acronyms used in Chapter 8 -- References -- Appendix 1 Richards and Gompertz functions -- A1.1 Richards function -- A1.2 Gompertz function -- Appendix 2 Gaussian integration in simulation modelling -- A2.1 Introduction -- A2.2 Canopy photosynthesis -- A2.3 Solution to the exercise -- Appendix 3 SUCROS1 — A crop growth model for potential production -- A3.1 Introduction -- A3.2 Initial conditions -- A3.3 Crop development (Chapter 5) -- A3.6 Carbohydrate production (Chapter 4) -- A3.7 Maintenance (Chapter 4) -- A3.8 Dry matter partitioning (Chapter 5) -- A3.9 Growth of plant organs and translocation (Chapts 4 and 5) -- A3.10 Leaf and ear development (Chapter 5) -- A3.11 Dry matter production -- A3.12 Weather data (Chapter 3) -- A3.13 Carbon balance check (Chapter 4) -- A3.14 Run control -- A3.15 Structure and listing of the model -- A3.16 Definition of the abbreviations used in SUCROS1 -- Appendix 4 SUCROS1 — adapted for soil reflection -- Appendix 5 The FORTRAN Simulation Translator (FST), a simulation language -- A5.1 Introduction -- A5.2 The structure of the model -- A5.3 FST example program simulating logistic growth -- A5.4 Comment lines and FST statements -- A5.5 Rules for FST keywords, variable names and values -- A5.6 Definition of input values of the model (PARAMETER, INCON, CONSTANT, FUNCTION) -- A5.7 Hierarchy of operations in expressions, and the use of FST functions and FORTRAN functions -- A5.8 FST keywords for output (TITLE, PRINT, OUTPUT) -- A5.9 FST run control keywords (TRANSLATION_GENERAL, TRANSLATION_FSE, TIMER, FINISH) -- A5.10 Weather data in FST programs (WEATHER) -- A5.11 Rerun facility, the END keyword -- A5.12 FORTRAN subroutines with FST, the STOP keyword -- Appendix 6 Derivation of the equations for exponential extinction of horizontal, non-black leaves (after Goudriaan (1977), pg 13–14). |
| Record Nr. | UNINA-9910789205203321 |
Goudriaan J
|
||
| Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 1994 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Modelling Potential Crop Growth Processes : Textbook with Exercises / / by J. Goudriaan, H.H. Van Laar
| Modelling Potential Crop Growth Processes : Textbook with Exercises / / by J. Goudriaan, H.H. Van Laar |
| Autore | Goudriaan J |
| Edizione | [1st ed. 1994.] |
| Pubbl/distr/stampa | Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 1994 |
| Descrizione fisica | 1 online resource (XII, 239 pages) |
| Disciplina | 580 |
| Collana | Current Issues in Production Ecology |
| Soggetto topico |
Botany
Ecology Differential equations Plant Science Differential Equations |
| ISBN | 94-011-0750-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Introduction -- 1.1 Levels of understanding of crop growth -- 1.2 Growth factors and production situations -- 1.3 CO2 assimilation as a basis -- 1.4 Some general modelling considerations -- 1.5 Outline of the book -- 2 The main seasonal growth pattern -- 2.1 Introduction -- 2.2 The growth phases -- 2.3 Exponential-linear growth: one equation -- 2.4 A special case: rm, cm,p1 and s are constant -- 2.5 Application for variable weather conditions -- 2.6 Generalization on approaching the senescence phase -- 2.7 A term for losses due to maintenance respiration -- 2.8 Additional exercises -- 2.9 Solutions to the exercises -- 2.10 Symbols and acronyms used in Chapter 2 -- 3 Climatic factors -- 3.1 Importance of the diurnal course -- 3.2 The daily progress of the incident global radiation -- 3.3 Temperature -- 3.4 Humidity -- 3.5 Wind speed -- 3.6 Annual temperature course -- 3.7 Additional exercises -- 3.8 Solutions to the exercises -- 3.9 Symbols and acronyms used in Chapter 3 -- 4 Assimilate flow and respiration -- 4.1 Introduction -- 4.2 Growth and respiration -- 4.3 Short-circuiting the assimilate pool on the long-term -- 4.4 Growth respiration and chemical composition -- 4.5 Maintenance respiration -- 4.6 Additional exercises -- 4.7 Solutions to the exercises -- 4.8 Symbols and acronyms used in Chapter 4 -- 5 Development and growth -- 5.1 Introduction -- 5.2 Development stages -- 5.3 Development rate and environmental factors -- 5.4 Distribution of dry matter and development stage -- 5.5 Leaf area growth -- 5.6 Solutions to the exercises -- 5.7 Symbols and acronyms used in Chapter 5 -- 6 Radiation in crops -- 6.1 Introduction -- 6.2 A model crop with black horizontal leaves -- 6.3 Black leaves that are not horizontal -- 6.4 Horizontal leaves that are not black -- 6.5 Scattering leaves, non-horizontal -- 6.6 Scattering by leaves and soil -- 6.7 Distribution of absorption of light over the leaf canopy -- 6.8 Clustering -- 6.9 Additional exercise -- 6.10 Solutions to the exercises -- 6.11 Symbols and acronyms used in Chapter 6 -- 7 Leaf energy balance and transpiration -- 7.1 Introduction -- 7.2 Energy balance of a non-transpiring leaf -- 7.3 Thermal (‘long-wave’) radiation: 3 – 20 ?m -- 7.4 Evaporation from a wet surface -- 7.5 Leaf transpiration -- 7.6 Units of conductance: m s?1 or ?mol m?2 s?1 -- 7.7 Notation with the coupling factor Omega -- 7.8 Additional exercises -- 7.9 Solutions to the exercises -- 7.10 Symbols and acronyms used in Chapter 7 -- 8 Analysis of leaf CO2 assimilation -- 8.1 Introduction -- 8.2 The photosynthesis-light response curve -- 8.3 The light and dark processes in CO2 assimilation -- 8.4 Limitation by low CO2 -- 8.5 Maximal photosynthetic capacity (at both high light and high CO2) -- 8.6 Limitation by low light -- 8.7 The C3 cycle, photorespiration and the CO2 compensation point -- 8.8 Temperature -- 8.9 Additional exercises -- 8.10 Solutions to the exercises -- 8.11 Symbols and acronyms used in Chapter 8 -- References -- Appendix 1 Richards and Gompertz functions -- A1.1 Richards function -- A1.2 Gompertz function -- Appendix 2 Gaussian integration in simulation modelling -- A2.1 Introduction -- A2.2 Canopy photosynthesis -- A2.3 Solution to the exercise -- Appendix 3 SUCROS1 — A crop growth model for potential production -- A3.1 Introduction -- A3.2 Initial conditions -- A3.3 Crop development (Chapter 5) -- A3.6 Carbohydrate production (Chapter 4) -- A3.7 Maintenance (Chapter 4) -- A3.8 Dry matter partitioning (Chapter 5) -- A3.9 Growth of plant organs and translocation (Chapts 4 and 5) -- A3.10 Leaf and ear development (Chapter 5) -- A3.11 Dry matter production -- A3.12 Weather data(Chapter 3) -- A3.13 Carbon balance check (Chapter 4) -- A3.14 Run control -- A3.15 Structure and listing of the model -- A3.16 Definition of the abbreviations used in SUCROS1 -- Appendix 4 SUCROS1 — adapted for soil reflection -- Appendix 5 The FORTRAN Simulation Translator (FST), a simulation language -- A5.1 Introduction -- A5.2 The structure of the model -- A5.3 FST example program simulating logistic growth -- A5.4 Comment lines and FST statements -- A5.5 Rules for FST keywords, variable names and values -- A5.6 Definition of input values of the model (PARAMETER, INCON, CONSTANT, FUNCTION) -- A5.7 Hierarchy of operations in expressions, and the use of FST functions and FORTRAN functions -- A5.8 FST keywords for output (TITLE, PRINT, OUTPUT) -- A5.9 FST run control keywords (TRANSLATION_GENERAL, TRANSLATION_FSE, TIMER, FINISH) -- A5.10 Weather data in FST programs (WEATHER) -- A5.11 Rerun facility, the END keyword -- A5.12 FORTRAN subroutines with FST, the STOP keyword -- Appendix 6 Derivation of the equations for exponential extinction of horizontal, non-black leaves (after Goudriaan (1977), pg 13–14). |
| Record Nr. | UNINA-9910953934403321 |
Goudriaan J
|
||
| Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 1994 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||