top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
Edizione [1st ed.]
Pubbl/distr/stampa Berlin ; ; Boston : , : De Gruyter, , [2025]
Descrizione fisica 1 online resource (X, 202 p.)
Collana De Gruyter Proceedings in Mathematics
Soggetto topico MATHEMATICS / Optimization
Soggetto non controllato Mathematical optimization, Machine learning, Nonlinear optimization, Discrete optimization, Physics informed learning
ISBN 3-11-137774-1
3-11-137677-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface -- Acknowledgment -- Contents -- A framework to solve inverse problems for parametric PDEs using adaptive finite elements and neural networks -- Generation of value function data for bilevel optimal control and application to hybrid electric vehicle -- Graph neural networks to predict strokes from blood flow simulations -- Capturing the macroscopic behavior of molecular dynamics with membership functions -- Adaptive gradient-enhanced Gaussian process surrogates for inverse problems -- Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems -- Constrained piecewise linear optimization by an active signature method -- Parallel trust-region approaches in neural network training -- Trustworthy optimization learning: a brief overview -- Compression-aware training of neural networks using Frank–Wolfe -- Approximation of generalized frequency response functions via vector fitting -- On the nonsmooth regularity condition LIKQ for different abs-normal representations -- Divergence of the ADAM algorithm with fixed-stepsize: a (very) simple example -- Index
Record Nr. UNISA-996657772003316
Berlin ; ; Boston : , : De Gruyter, , [2025]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
Edizione [1st ed.]
Pubbl/distr/stampa Berlin ; ; Boston : , : De Gruyter, , [2025]
Descrizione fisica 1 online resource (X, 202 p.)
Collana De Gruyter Proceedings in Mathematics
Soggetto topico MATHEMATICS / Optimization
Soggetto non controllato Mathematical optimization, Machine learning, Nonlinear optimization, Discrete optimization, Physics informed learning
ISBN 3-11-137774-1
3-11-137677-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface -- Acknowledgment -- Contents -- A framework to solve inverse problems for parametric PDEs using adaptive finite elements and neural networks -- Generation of value function data for bilevel optimal control and application to hybrid electric vehicle -- Graph neural networks to predict strokes from blood flow simulations -- Capturing the macroscopic behavior of molecular dynamics with membership functions -- Adaptive gradient-enhanced Gaussian process surrogates for inverse problems -- Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems -- Constrained piecewise linear optimization by an active signature method -- Parallel trust-region approaches in neural network training -- Trustworthy optimization learning: a brief overview -- Compression-aware training of neural networks using Frank–Wolfe -- Approximation of generalized frequency response functions via vector fitting -- On the nonsmooth regularity condition LIKQ for different abs-normal representations -- Divergence of the ADAM algorithm with fixed-stepsize: a (very) simple example -- Index
Record Nr. UNINA-9911024074903321
Berlin ; ; Boston : , : De Gruyter, , [2025]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Model Order Reduction . Volume 1 System- and Data-Driven Methods and Algorithms / / ed. by Peter Benner
Model Order Reduction . Volume 1 System- and Data-Driven Methods and Algorithms / / ed. by Peter Benner
Pubbl/distr/stampa Berlin ; ; Boston : , : De Gruyter, , [2021]
Descrizione fisica 1 online resource (X, 378 p.)
Disciplina 515.353
Collana Model Order Reduction
Soggetto topico MATHEMATICS / Numerical Analysis
ISBN 3-11-049896-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface to the first volume of Model Order Reduction -- Contents -- 1 Model order reduction: basic concepts and notation -- 2 Balancing-related model reduction methods -- 3 Model order reduction based on moment-matching -- 4 Modal methods for reduced order modeling -- 5 Post-processing methods for passivity enforcement -- 6 The Loewner framework for system identification and reduction -- 7 Manifold interpolation -- 8 Vector fitting -- 9 Kernel methods for surrogate modeling -- 10 Kriging: methods and applications -- Index
Record Nr. UNISA-996445849203316
Berlin ; ; Boston : , : De Gruyter, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui