The ergodic theory of lattice subgroups [[electronic resource] /] / Alexander Gorodnik and Amos Nevo |
Autore | Gorodnik Alexander <1975-> |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, 2009 |
Descrizione fisica | 1 online resource (136 p.) |
Disciplina | 515/.48 |
Altri autori (Persone) | NevoAmos <1966-> |
Collana | Annals of mathematics studies |
Soggetto topico |
Ergodic theory
Lie groups Lattice theory Harmonic analysis Dynamics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-30380-5
9786612303807 1-4008-3106-7 |
Classificazione | SI 830 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter One. Main results: Semisimple Lie groups case -- Chapter Two. Examples and applications -- Chapter Three. Definitions, preliminaries, and basic tools -- Chapter Four. Main results and an overview of the proofs -- Chapter Five. Proof of ergodic theorems for S-algebraic groups -- Chapter Six. Proof of ergodic theorems for lattice subgroups -- Chapter Seven. Volume estimates and volume regularity -- Chapter Eight. Comments and complements -- Bibliography -- Index |
Record Nr. | UNINA-9910456597903321 |
Gorodnik Alexander <1975->
![]() |
||
Princeton, N.J., : Princeton University Press, 2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The ergodic theory of lattice subgroups [[electronic resource] /] / Alexander Gorodnik and Amos Nevo |
Autore | Gorodnik Alexander <1975-> |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, 2009 |
Descrizione fisica | 1 online resource (136 p.) |
Disciplina | 515/.48 |
Altri autori (Persone) | NevoAmos <1966-> |
Collana | Annals of mathematics studies |
Soggetto topico |
Ergodic theory
Lie groups Lattice theory Harmonic analysis Dynamics |
Soggetto non controllato |
Absolute continuity
Algebraic group Amenable group Asymptote Asymptotic analysis Asymptotic expansion Automorphism Borel set Bounded function Bounded operator Bounded set (topological vector space) Congruence subgroup Continuous function Convergence of random variables Convolution Coset Counting problem (complexity) Counting Differentiable function Dimension (vector space) Diophantine approximation Direct integral Direct product Discrete group Embedding Equidistribution theorem Ergodic theory Ergodicity Estimation Explicit formulae (L-function) Family of sets Haar measure Hilbert space Hyperbolic space Induced representation Infimum and supremum Initial condition Interpolation theorem Invariance principle (linguistics) Invariant measure Irreducible representation Isometry group Iwasawa group Lattice (group) Lie algebra Linear algebraic group Linear space (geometry) Lipschitz continuity Mass distribution Mathematical induction Maximal compact subgroup Maximal ergodic theorem Measure (mathematics) Mellin transform Metric space Monotonic function Neighbourhood (mathematics) Normal subgroup Number theory One-parameter group Operator norm Orthogonal complement P-adic number Parametrization Parity (mathematics) Pointwise convergence Pointwise Principal homogeneous space Principal series representation Probability measure Probability space Probability Rate of convergence Regular representation Representation theory Resolution of singularities Sobolev space Special case Spectral gap Spectral method Spectral theory Square (algebra) Subgroup Subsequence Subset Symmetric space Tensor algebra Tensor product Theorem Transfer principle Unit sphere Unit vector Unitary group Unitary representation Upper and lower bounds Variable (mathematics) Vector group Vector space Volume form Word metric |
ISBN |
1-282-30380-5
9786612303807 1-4008-3106-7 |
Classificazione | SI 830 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter One. Main results: Semisimple Lie groups case -- Chapter Two. Examples and applications -- Chapter Three. Definitions, preliminaries, and basic tools -- Chapter Four. Main results and an overview of the proofs -- Chapter Five. Proof of ergodic theorems for S-algebraic groups -- Chapter Six. Proof of ergodic theorems for lattice subgroups -- Chapter Seven. Volume estimates and volume regularity -- Chapter Eight. Comments and complements -- Bibliography -- Index |
Record Nr. | UNINA-9910781200803321 |
Gorodnik Alexander <1975->
![]() |
||
Princeton, N.J., : Princeton University Press, 2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|