Algebraic shift register sequences / / Mark Goresky, Andrew Klapper [[electronic resource]] |
Autore | Goresky Mark <1950-> |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2012 |
Descrizione fisica | 1 online resource (xv, 498 pages) : digital, PDF file(s) |
Disciplina | 621.397 |
Soggetto topico |
Shift registers - Mathematics
Sequences (Mathematics) |
ISBN |
1-107-23004-7
1-280-87767-7 1-139-22298-8 9786613718983 1-139-21818-2 1-139-22470-0 1-139-21509-4 1-139-22127-2 1-139-05744-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; ALGEBRAIC SHIFT REGISTER SEQUENCES; Title; Copyright; Dedication; Contents; Figures; Tables; Acknowledgements; 1: Introduction; 1.1 Pseudo-random sequences; 1.2 LFSR sequences; 1.3 FCSR sequences; 1.4 Register synthesis; 1.5 Applications of pseudo-random sequences; 1.5.1 Frequency hopping spread spectrum; 1.5.2 Code division multiple access; 1.5.3 Optical CDMA; 1.5.4 Synchronization and radar; 1.5.5 Stream ciphers; 1.5.6 Pseudo-random arrays; 1.5.7 Monte Carlo; 1.5.8 Built in self test; 1.5.9 Wear leveling; Part I: Algebraically defined sequences; 2: Sequences; 2.1 Sequences and period
2.2 Fibonacci numbers2.3 Distinct sequences; 2.4 Sequence generators and models; 2.5 Exercises; 3: Linear feedback shift registers and linear recurrences; 3.1 Definitions; 3.2 Matrix description; 3.2.1 Companion matrix; 3.2.2 The period; 3.3 Initial loading; 3.4 Power series; 3.4.1 Definitions; 3.4.2 Recurrent sequences and the ring R0(x) of fractions; 3.4.3 Eventually periodic sequences and the ring E; 3.4.4 When R is a field; 3.4.5 R[[x]] as an inverse limit; 3.4.6 Reciprocal Laurent series; 3.5 Generating functions; 3.6 When the connection polynomial factors 3.7 Algebraic models and the ring R[x]/(q)3.7.1 Abstract representation; 3.7.2 Trace representation; 3.8 Families of recurring sequences and ideals; 3.8.1 Families of recurring sequences over a finite field; 3.8.2 Families of linearly recurring sequences over a ring; 3.9 Examples; 3.9.1 Shift registers over a field; 3.9.2 Fibonacci numbers; 3.10 Exercises; 4: Feedback with carry shift registers and multiply with carry sequences; 4.1 Definitions; 4.2 N-adic numbers; 4.2.1 Basic facts; 4.2.2 The ring QN; 4.2.3 The ring ZN,0; 4.2.4 ZN as an inverse limit; 4.2.5 Structure of ZN 4.3 Analysis of FCSRs4.4 Initial loading; 4.5 Representation of FCSR sequences; 4.6 Example: q=37; 4.7 Memory requirements; 4.8 Random number generation using MWC; 4.8.1 MWC generators; 4.8.2 Periodic states; 4.8.3 Memory requirements; 4.8.4 Finding good multipliers; 4.9 Exercises; 5: Algebraic feedback shift registers; 5.1 Definitions; 5.2 π-adic numbers; 5.2.1 Construction of Rπ; 5.2.2 Divisibility in Rπ; 5.2.3 The example of πd = N; 5.3 Properties of AFSRs; 5.4 Memory requirements; 5.4.1 AFSRs over number fields; 5.4.2 AFSRs over rational function fields 6.5 Elementary description of d-FCSR sequences |
Record Nr. | UNINA-9910461507003321 |
Goresky Mark <1950-> | ||
Cambridge : , : Cambridge University Press, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Algebraic shift register sequences / / Mark Goresky, Andrew Klapper [[electronic resource]] |
Autore | Goresky Mark <1950-> |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2012 |
Descrizione fisica | 1 online resource (xv, 498 pages) : digital, PDF file(s) |
Disciplina | 621.397 |
Soggetto topico |
Shift registers - Mathematics
Sequences (Mathematics) |
ISBN |
1-107-23004-7
1-280-87767-7 1-139-22298-8 9786613718983 1-139-21818-2 1-139-22470-0 1-139-21509-4 1-139-22127-2 1-139-05744-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; ALGEBRAIC SHIFT REGISTER SEQUENCES; Title; Copyright; Dedication; Contents; Figures; Tables; Acknowledgements; 1: Introduction; 1.1 Pseudo-random sequences; 1.2 LFSR sequences; 1.3 FCSR sequences; 1.4 Register synthesis; 1.5 Applications of pseudo-random sequences; 1.5.1 Frequency hopping spread spectrum; 1.5.2 Code division multiple access; 1.5.3 Optical CDMA; 1.5.4 Synchronization and radar; 1.5.5 Stream ciphers; 1.5.6 Pseudo-random arrays; 1.5.7 Monte Carlo; 1.5.8 Built in self test; 1.5.9 Wear leveling; Part I: Algebraically defined sequences; 2: Sequences; 2.1 Sequences and period
2.2 Fibonacci numbers2.3 Distinct sequences; 2.4 Sequence generators and models; 2.5 Exercises; 3: Linear feedback shift registers and linear recurrences; 3.1 Definitions; 3.2 Matrix description; 3.2.1 Companion matrix; 3.2.2 The period; 3.3 Initial loading; 3.4 Power series; 3.4.1 Definitions; 3.4.2 Recurrent sequences and the ring R0(x) of fractions; 3.4.3 Eventually periodic sequences and the ring E; 3.4.4 When R is a field; 3.4.5 R[[x]] as an inverse limit; 3.4.6 Reciprocal Laurent series; 3.5 Generating functions; 3.6 When the connection polynomial factors 3.7 Algebraic models and the ring R[x]/(q)3.7.1 Abstract representation; 3.7.2 Trace representation; 3.8 Families of recurring sequences and ideals; 3.8.1 Families of recurring sequences over a finite field; 3.8.2 Families of linearly recurring sequences over a ring; 3.9 Examples; 3.9.1 Shift registers over a field; 3.9.2 Fibonacci numbers; 3.10 Exercises; 4: Feedback with carry shift registers and multiply with carry sequences; 4.1 Definitions; 4.2 N-adic numbers; 4.2.1 Basic facts; 4.2.2 The ring QN; 4.2.3 The ring ZN,0; 4.2.4 ZN as an inverse limit; 4.2.5 Structure of ZN 4.3 Analysis of FCSRs4.4 Initial loading; 4.5 Representation of FCSR sequences; 4.6 Example: q=37; 4.7 Memory requirements; 4.8 Random number generation using MWC; 4.8.1 MWC generators; 4.8.2 Periodic states; 4.8.3 Memory requirements; 4.8.4 Finding good multipliers; 4.9 Exercises; 5: Algebraic feedback shift registers; 5.1 Definitions; 5.2 π-adic numbers; 5.2.1 Construction of Rπ; 5.2.2 Divisibility in Rπ; 5.2.3 The example of πd = N; 5.3 Properties of AFSRs; 5.4 Memory requirements; 5.4.1 AFSRs over number fields; 5.4.2 AFSRs over rational function fields 6.5 Elementary description of d-FCSR sequences |
Record Nr. | UNINA-9910790471703321 |
Goresky Mark <1950-> | ||
Cambridge : , : Cambridge University Press, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Algebraic shift register sequences / / Mark Goresky, Andrew Klapper |
Autore | Goresky Mark <1950-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cambridge, UK ; ; New York, : Cambridge University Press, 2012 |
Descrizione fisica | 1 online resource (xv, 498 pages) : digital, PDF file(s) |
Disciplina | 621.397 |
Altri autori (Persone) | KlapperAndrew |
Soggetto topico |
Shift registers - Mathematics
Sequences (Mathematics) |
ISBN |
1-107-23004-7
1-280-87767-7 1-139-22298-8 9786613718983 1-139-21818-2 1-139-22470-0 1-139-21509-4 1-139-22127-2 1-139-05744-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; ALGEBRAIC SHIFT REGISTER SEQUENCES; Title; Copyright; Dedication; Contents; Figures; Tables; Acknowledgements; 1: Introduction; 1.1 Pseudo-random sequences; 1.2 LFSR sequences; 1.3 FCSR sequences; 1.4 Register synthesis; 1.5 Applications of pseudo-random sequences; 1.5.1 Frequency hopping spread spectrum; 1.5.2 Code division multiple access; 1.5.3 Optical CDMA; 1.5.4 Synchronization and radar; 1.5.5 Stream ciphers; 1.5.6 Pseudo-random arrays; 1.5.7 Monte Carlo; 1.5.8 Built in self test; 1.5.9 Wear leveling; Part I: Algebraically defined sequences; 2: Sequences; 2.1 Sequences and period
2.2 Fibonacci numbers2.3 Distinct sequences; 2.4 Sequence generators and models; 2.5 Exercises; 3: Linear feedback shift registers and linear recurrences; 3.1 Definitions; 3.2 Matrix description; 3.2.1 Companion matrix; 3.2.2 The period; 3.3 Initial loading; 3.4 Power series; 3.4.1 Definitions; 3.4.2 Recurrent sequences and the ring R0(x) of fractions; 3.4.3 Eventually periodic sequences and the ring E; 3.4.4 When R is a field; 3.4.5 R[[x]] as an inverse limit; 3.4.6 Reciprocal Laurent series; 3.5 Generating functions; 3.6 When the connection polynomial factors 3.7 Algebraic models and the ring R[x]/(q)3.7.1 Abstract representation; 3.7.2 Trace representation; 3.8 Families of recurring sequences and ideals; 3.8.1 Families of recurring sequences over a finite field; 3.8.2 Families of linearly recurring sequences over a ring; 3.9 Examples; 3.9.1 Shift registers over a field; 3.9.2 Fibonacci numbers; 3.10 Exercises; 4: Feedback with carry shift registers and multiply with carry sequences; 4.1 Definitions; 4.2 N-adic numbers; 4.2.1 Basic facts; 4.2.2 The ring QN; 4.2.3 The ring ZN,0; 4.2.4 ZN as an inverse limit; 4.2.5 Structure of ZN 4.3 Analysis of FCSRs4.4 Initial loading; 4.5 Representation of FCSR sequences; 4.6 Example: q=37; 4.7 Memory requirements; 4.8 Random number generation using MWC; 4.8.1 MWC generators; 4.8.2 Periodic states; 4.8.3 Memory requirements; 4.8.4 Finding good multipliers; 4.9 Exercises; 5: Algebraic feedback shift registers; 5.1 Definitions; 5.2 π-adic numbers; 5.2.1 Construction of Rπ; 5.2.2 Divisibility in Rπ; 5.2.3 The example of πd = N; 5.3 Properties of AFSRs; 5.4 Memory requirements; 5.4.1 AFSRs over number fields; 5.4.2 AFSRs over rational function fields 6.5 Elementary description of d-FCSR sequences |
Record Nr. | UNINA-9910814098603321 |
Goresky Mark <1950-> | ||
Cambridge, UK ; ; New York, : Cambridge University Press, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|