top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Conflicting models for the origin of life / / edited by Stoyan K. Smoukov, Joseph Seckbach, Richard Gordon
Conflicting models for the origin of life / / edited by Stoyan K. Smoukov, Joseph Seckbach, Richard Gordon
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Descrizione fisica 1 online resource (504 pages)
Disciplina 050
Soggetto topico Astronomy
ISBN 1-119-55556-6
1-119-55555-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Foreword, "Are There Men on the Moon?" by Winston S. Churchill -- Preface -- Appendix to Preface by Richard Gordon and George Mikhailovsky -- Part I: Introduction to the Origin of Life Puzzle -- Chapter 1 Origin of Life: Conflicting Models for the Origin of Life -- 1.1 Introduction -- 1.2 Top-Down Approach-The Phylogenetic Tree of Life -- 1.3 Bottom-Up Approach-The Hypotheses -- 1.4 The Emergence of Chemolithoautotrophs and Photolithoautotrophs? -- 1.5 Viruses: The Fourth Domain of Life? -- 1.6 Where are We with the Origin of Life on Earth? -- References -- Chapter 2 Characterizing Life: Four Dimensions and their Relevance to Origin of Life Research -- 2.1 Introduction -- 2.2 The Debate About (Defining) Life -- 2.2.1 The Debate and the Meta-Debate -- 2.2.2 Defining Life is Only One Way to Address the Question "What is Life?" -- 2.3 Does Origin of Life Research Need a Characterization of Life? -- 2.4 Dimensions of Characterizing Life -- 2.4.1 Dimension 1: Dichotomy or Matter of Degree? -- 2.4.2 Dimension 2: Material or Functional? -- 2.4.3 Dimension 3: Individual or Collective? -- 2.4.4 Dimension 4: Minimal or Inclusive -- 2.4.5 Summary Discussion of the Dimensions -- 2.5 Conclusion -- Acknowledgments -- References -- Chapter 3 Emergence, Construction, or Unlikely? Navigating the Space of Questions Regarding Life's Origins -- 3.1 How Can We Approach the Origins Quest(ion)? -- 3.2 Avian Circularities -- 3.3 Assuming That... -- 3.4 Unlikely -- 3.5 Construction -- 3.6 Emergence -- References -- Part II: Chemistry Approaches -- Chapter 4 The Origin of Metabolism and GADV Hypothesis on the Origin of Life -- 4.1 Introduction -- 4.2 [GADV]-Amino Acids and Protein 0th-Order Structure -- 4.3 Exploration of the Initial Metabolism: The Origin of Metabolism.
4.3.1 From What Kind of Enzymatic Reactions Did the Metabolic System Originate? -- 4.3.2 What Kind of Organic Compounds Accumulated on the Primitive Earth -- 4.3.3 What Organic Compounds were Required for the First Life to Emerge? -- 4.4 From Reactions Using What Kind of Organic Compounds Did the Metabolism Originate? -- 4.4.1 Catalytic Reactions with What Kind of Organic Compounds Were Incorporated Into the Initial Metabolism? -- 4.4.2 Search for Metabolic Reactions Incorporated Into the Initial Metabolism -- 4.4.3 Syntheses of [GADV]-Amino Acids Leading to Produce [GADV]-Proteins/Peptides Were One of the Most Important Matters for the First Life -- 4.4.4 Nucleotide Synthetic Pathways were Integrated at the Second Phase in the Initial Metabolism -- 4.5 Discussion -- 4.5.1 Protein 0th-Order Structure Was the Key for Solving the Origin of Metabolism -- 4.5.2 Validity of GPG-Three Compounds Hypothesis on the Origin of Metabolism -- 4.5.3 Establishment of the Metabolic System and the Emergence of Life -- 4.5.4 The Emergence of Life Viewed from the Origin of Metabolism -- Acknowledgments -- References -- Chapter 5 Chemical Automata at the Origins of Life -- 5.1 Introduction -- 5.2 Theoretical Models -- 5.2.1 The Chemoton Model -- 5.2.2 Autopoiesis -- 5.2.3 Biotic Abstract Dual Automata -- 5.2.4 Automata and Diffusion-Controlled Reactions -- 5.2.5 Quasi-Species and Hypercycle -- 5.2.6 Computer Modeling -- 5.2.7 Two-Dimensional Automata -- 5.3 Experimental Approach -- 5.3.1 The Ingredients for Life -- 5.3.2 Capabilities Required for the Chemical Automata -- 5.3.2.1 Autonomy -- 5.3.2.2 Self-Ordering and Self-Organization -- 5.3.2.3 About Discriminating Aggregation -- 5.3.2.4 Autocatalysis and Competition -- 5.4 Conclusion -- References -- Chapter 6 A Universal Chemical Constructor to Explore the Nature and Origin of Life -- 6.1 Introduction.
6.2 Digitization of Chemistry -- 6.3 Environmental Programming, Recursive Cycles, and Protocells -- 6.4 Measuring Complexity and Chemical Selection Engines -- 6.5 Constructing a Chemical Selection Engine -- Acknowledgements -- References -- Chapter 7 How to Make a Transmembrane Domain at the Origin of Life: A Possible Origin of Proteins -- 7.1 Introduction -- 7.2 The Initial "Core" Amino Acids -- 7.3 The Thickness of Membranes of the First Vesicles -- 7.4 Carbon-Carbon Distances Perpendicular to a Membrane -- 7.5 The Thickness of Modern Membranes -- 7.6 A Prebiotic Model for the Coordinated Growth of Membrane Thickness and Transmembrane Peptides -- 7.7 A Model for the Coordinated Growth of Membrane Thickness and Transmembrane Peptides -- 7.8 RNA World with the Protein World -- 7.9 Conclusion -- Acknowledgements -- References -- Part III: Physics Approaches -- Chapter 8 Patterns that Persist: Heritable Information in Stochastic Dynamics -- 8.1 Introduction -- 8.2 Markov Processes -- 8.2.1 Simple Examples of Markov Processes -- 8.2.2 Stochastic Dynamics -- 8.2.3 Master Equation -- 8.2.4 Dynamic Persistence -- 8.2.5 Coarse Graining -- 8.2.6 Entropy Production -- 8.3 Results -- 8.3.1 The Persistence Filter -- 8.4 Mechanisms of Persistence -- 8.5 Effects of Size N and Disequilibrium γ -- 8.6 Probability of Persistence -- 8.6.1 Continuity Constraint -- 8.6.2 Locality Constraint -- 8.6.3 New Strategies for Persistence -- 8.7 Measuring Persistence in Practice -- 8.7.1 Computable Information Density (CID) -- 8.7.2 Quantifying Persistence in Dynamic Assemblies of Colloidal Rollers -- 8.8 Conclusions -- 8.9 Methods -- 8.9.1 Coarse-Graining -- 8.10 Monte Carlo Optimization -- 8.11 Experiments on Ferromagnetic Rollers -- 8.12 A Persistence in Equilibrium Systems -- Acknowledgements -- References.
Chapter 9 When We Were Triangles: Shape in the Origin of Life via Abiotic, Shaped Droplets to Living, Polygonal Archaea During the Abiocene -- 9.1 Introduction -- 9.1.1 What Correlates with Archaea Shape? Nothing! -- 9.1.2 Archaea's Place in the Tree of Life -- 9.1.3 The Discovery and Exploration of Shaped Droplets -- 9.1.4 Shaped Droplets as Protocells -- 9.1.5 Comparison of Shaped Droplets with Archaea -- 9.1.6 The S-Layer -- 9.1.7 The S-Layer as a Two-Dimensional Liquid with Fault Lines -- 9.1.8 The Analogy of the S-Layer to Bubble Rafts -- 9.1.9 Energy Minimization Model for the S-Layer in Polygonal Archaea -- 9.2 Discussion -- 9.3 Conclusion -- Acknowledgements -- References -- Chapter 10 Challenges and Perspectives of Robot Inventors that Autonomously Design, Build, and Test Physical Robots -- 10.1 Introduction -- 10.2 Physical Evolutionary-Developmental Robotics -- 10.2.1 Robotic Invention -- 10.2.2 Physical Morphology Adaptation -- 10.3 Falling Paper Design Experiments -- 10.3.1 Design-Behavior Mapping -- 10.3.2 More Variations of Paper Falling Patterns -- 10.3.3 Characterizing Falling Paper Behaviors -- 10.4 Evolutionary Dynamics of Collective Bernoulli Balloons -- 10.5 Discussions and Conclusions -- Acknowledgments -- References -- Part IV: The Approach of Creating Life -- Chapter 11 Synthetic Cells: A Route Toward Assembling Life -- 11.1 Compartmentalization: Putting Life in a Box -- 11.2 The Making of Cell-Sized Giant Liposomes -- 11.3 Coacervate-Based Synthetic Cells -- 11.4 Adaptivity and Functionality in Synthetic Cells -- 11.5 Synthetic Cell Information Processing and Communication -- 11.6 Intracellular Information Processing: Making Decisions with All the Noise -- 11.7 Extracellular Communication: the Art of Talking and Selective Listening -- 11.8 Conclusions -- Acknowledgments -- References.
Chapter 12 Origin of Life from a Maker's Perspective-Focus on Protocellular Compartments in Bottom-Up Synthetic Biology -- 12.1 Introduction -- 12.2 Unifying the Plausible Protocells in Line with the Crowded Cell -- 12.3 Self-Sustained Cycles of Growth and Division -- 12.4 Transport and Energy Generation at the Interface -- 12.4.1 Energy and Complexity -- 12.4.2 Energy Compartmentation -- 12.5 Synergistic Effects Towards the Origin of Life -- References -- Part V: When and Where Did Life Start? -- Chapter 13 A Nuclear Geyser Origin of Life: Life Assembly Plant - Three-Step Model for the Emergence of the First Life on Earth and Cell Dynamics for the Coevolution of Life's Functions -- 13.1 Introduction -- 13.2 Natural Nuclear Reactor -- 13.2.1 Principle of a Natural Nuclear Reactor -- 13.2.2 Natural Nuclear Reactor in Gabon -- 13.2.3 Radiation Chemistry to Produce Organics -- 13.2.4 Hadean Natural Nuclear Reactor -- 13.3 Nuclear Geyser Model as a Birthplace of Life on the Hadean Earth -- 13.4 Nine Requirements for the Birthplace of Life -- 13.5 Three-Step Model for the Emergence of the First Life on Hadean Earth -- 13.5.1 The Emergence of the First Proto-Life -- 13.5.1.1 Domain I: Inorganics -- 13.5.1.2 Domain II: From Inorganic to Organic -- 13.5.1.3 Domain III: Production of More Advanced BBL -- 13.5.1.4 Domain IV: Passage Connecting Geyser Main Room with the Surface and Fountain Flow -- 13.5.1.5 Domain V: Production of BBL in an Oxidizing Wet-Dry Surface Environment -- 13.5.1.6 Domain VI: Birthplace of the First Proto-Life -- 13.5.1.7 Utilization of Metallic Proteins -- 13.5.2 The Emergence of the Second Proto-Life -- 13.5.2.1 Drastic Environmental Change from Step 1 to Step 2 -- 13.5.2.2 Biological Response from Step 1 to Step 2 -- 13.5.3 The Emergence of the Third Proto-Life, Prokaryote.
13.5.3.1 Drastic Environmental Changes from Step 2 to Step 3.
Record Nr. UNINA-9910830299203321
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diatom gliding motility / / edited by Stanley A. Cohn, Kalina M. Manoylov, Richard Gordon
Diatom gliding motility / / edited by Stanley A. Cohn, Kalina M. Manoylov, Richard Gordon
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Scrivener Publishing : , : Wiley, , [2021]
Descrizione fisica 1 online resource (480 pages)
Disciplina 579.85
Soggetto topico Diatoms
Soggetto genere / forma Electronic books.
ISBN 1-119-52657-4
1-119-52648-5
1-119-52660-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555253803321
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Scrivener Publishing : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diatom gliding motility / / edited by Stanley A. Cohn, Kalina M. Manoylov, Richard Gordon
Diatom gliding motility / / edited by Stanley A. Cohn, Kalina M. Manoylov, Richard Gordon
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Scrivener Publishing : , : Wiley, , [2021]
Descrizione fisica 1 online resource (480 pages)
Disciplina 579.85
Soggetto topico Diatoms
ISBN 1-119-52657-4
1-119-52648-5
1-119-52660-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830907603321
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Scrivener Publishing : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diatom microscopy / / edited by Nirmal Mazumder, Richard Gordon
Diatom microscopy / / edited by Nirmal Mazumder, Richard Gordon
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (365 pages)
Disciplina 502.82
Collana Diatoms: Biology and Applications Ser.
Soggetto topico Microscopy
ISBN 1-119-71156-8
1-119-71154-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Investigation of Diatoms with Optical Microscopy -- 1.1 Introduction -- 1.2 Light Microscopy -- 1.2.1 Phase Contrast Microscopy -- 1.2.2 Differential Interference Contrast (DIC) Microscopy -- 1.2.3 Darkfield Microscopy -- 1.3 Fluorescence Microscopy -- 1.4 Confocal Laser Scanning Microscopy -- 1.5 Multiphoton Microscopy -- 1.6 Super-Resolution Optical Microscopy -- 1.7 Conclusion -- Acknowledgement -- References -- 2 Nanobioscience Studies of Living Diatoms Using Unique Optical Microscopy Systems -- Abbreviations -- 2.1 Trajectory Analysis of Gliding Among Individual Diatom Cells Using Microchamber Systems -- 2.2 Direct Observation of Floating Phenomena of Individual Diatoms Using a "Tumbled" Microscope System -- 2.3 Three-Dimensional Physical Imaging of Living Diatom Cells Using a Holographic Microscope System -- Acknowledgements -- References -- 3 Recent Insights Into the Ultrastructure of Diatoms Using Scanning and Transmission Electron-Microscopy -- 3.1 Introduction -- 3.2 Scanning Electron Microscopy (SEM) of Diatoms -- 3.3 Transmission Electron Microscopy (TEM) of Diatoms -- 3.3.1 Limitations -- 3.4 Conclusion -- References -- 4 Atomic Force Microscopy Study of Diatoms -- 4.1 Introduction -- 4.2 Types of AFM Modes -- 4.3 Sample Preparation and Methods -- 4.4 Study of Diatom Ultrastructure Under AFM -- 4.5 Conclusion -- Glossary -- Acknowledgement -- References -- 5 Refractive Index Tomography for Diatom Analysis -- 5.1 Introduction -- 5.2 Fundamentals of PC-ODT -- 5.3 Experimental Setup for PC-ODT -- 5.4 Diatom RI Reconstructions with Bright-Field Illumination -- 5.5 Illumination Impact on PC-ODT Performance -- 5.6 Concluding Remarks -- Acknowledgement -- References -- 6 Luminescent Diatom Frustules: A Review on the Key Research Applications.
6.1 Introduction -- 6.2 Key Research Applications of Luminescence Properties of Diatom Frustules -- 6.2.1 Novel Nanophotonic and Optoelectronic Applications of Luminescent Diatom Frustules -- 6.2.2 Applications of Diatom Luminescence in Sensing -- 6.2.3 Biomedical Applications of Diatom Luminescence -- 6.2.4 Other Studies on Diatom Luminescence -- 6.3 Future Perspectives -- 6.4 Conclusion -- Acknowledgement -- References -- 7 Micro to Nano Ornateness of Diatoms from Geographically Distant Origins of the Globe -- 7.1 Introduction -- 7.2 Materials and Methods -- 7.2.1 Diatom Samples and Microscopy -- 7.2.1.1 By Michael J. Stringer -- 7.2.1.2 Diatom Oamaru Slides by Diane Winter -- 7.2.1.3 By Daniel Mathys -- 7.2.1.4 Diatom Sampling, Slide Preparation and Imaging from Himalayas, Plains and Arabian Sea, India -- 7.3 Diatoms from Different Geographical Origins of the World -- 7.3.1 Oamaru Diatoms -- 7.3.2 Diatom Images Gifted by Michael J. Stringer -- 7.3.3 Diatoms from Natural History Museum Basel, Switzerland a Piece of Art by Daniel Mathys -- 7.3.4 Diatoms from India -- 7.4 Conclusion -- 7.5 Acknowledgements -- References -- 8 Types of X-Ray Techniques for Diatom Research -- 8.1 Introduction -- 8.2 Applications -- 8.2.1 Synchrotron Radiation-Based X-Ray Techniques -- 8.2.2 X-Ray Computed Tomography -- 8.2.3 X-Ray Fluorescence-Based Techniques -- 8.2.4 X-Ray Microanalysis -- 8.2.5 X-Ray Absorption-Based Techniques -- 8.2.6 X-Ray Diffraction -- 8.2.7 Other X-Ray-Based Techniques -- 8.3 Conclusions -- Glossary -- References -- 9 Diatom Assisted SERS -- 9.1 Introduction -- 9.2 Diatom -- 9.2.1 Basic Overview -- 9.2.2 Physiological Characteristics -- 9.2.3 Optical and Relevant Properties -- 9.3 Raman Scattering -- 9.3.1 Basics -- 9.3.2 Surface Enhanced Raman Scattering -- 9.3.3 Optoelectronic Investigations.
9.4 SERS Through Diatom: Fundamentals and Application Overview -- 9.5 Conclusion and Future Outlook -- References -- 10 Diatoms as Sensors and Their Applications -- 10.1 Introduction -- 10.2 Diatoms as Biosensors -- 10.2.1 Electrochemical Sensors -- 10.2.2 Plasmonic Sensors -- 10.2.3 Immunoassay Sensors -- 10.2.4 Optical and Optofluidic Sensors -- 10.2.5 Biochemical Sensors -- 10.2.6 FRET-Based Sensors -- 10.2.7 Microfluidics-Based Sensors -- 10.3 Conclusion -- Acknowledgments -- References -- 11 Diatom Frustules: A Transducer Platform for Optical Detection of Molecules -- 11.1 Introduction -- 11.2 Optical Properties of Diatom Frustules -- 11.2.1 Diatom as a Photoluminescent Materials -- 11.2.2 Diatom as a Photonic Crystal -- 11.2.3 Diatoms as a SERS Substrate -- 11.3 Methods Involved in Thin Film Deposition of Diatom Frustules -- 11.4 Diatom as an Optical Transducer for Biosensors -- 11.5 Diatom as an Optical Transducer for Gas/ Chemical Sensors -- 11.6 Conclusion -- References -- 12 Effects of Light on Physico-Chemical Properties of Diatoms -- 12.1 Introduction -- 12.2 Effect of Light on Diatom Function and Morphology -- 12.2.1 Effect of Light Intensity on Diatom Morphology -- 12.2.2 Effect of Light Intensity on Diatom Growth -- 12.2.3 Effect of Light Intensity on Photosynthesis in Diatoms -- 12.2.4 Effect of Wavelength of Light on Diatom Pigment System -- 12.2.5 Effect of Light Intensity on the Physiology of Diatoms -- 12.3 Conclusion -- Acknowledgment -- References -- Index -- Also of Interest -- EULA.
Record Nr. UNINA-9910573099603321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diatom microscopy / / edited by Nirmal Mazumder, Richard Gordon
Diatom microscopy / / edited by Nirmal Mazumder, Richard Gordon
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (365 pages)
Disciplina 502.82
Collana Diatoms: Biology and Applications
Soggetto topico Microscopy
ISBN 1-119-71155-X
1-119-71156-8
1-119-71154-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Investigation of Diatoms with Optical Microscopy -- 1.1 Introduction -- 1.2 Light Microscopy -- 1.2.1 Phase Contrast Microscopy -- 1.2.2 Differential Interference Contrast (DIC) Microscopy -- 1.2.3 Darkfield Microscopy -- 1.3 Fluorescence Microscopy -- 1.4 Confocal Laser Scanning Microscopy -- 1.5 Multiphoton Microscopy -- 1.6 Super-Resolution Optical Microscopy -- 1.7 Conclusion -- Acknowledgement -- References -- 2 Nanobioscience Studies of Living Diatoms Using Unique Optical Microscopy Systems -- Abbreviations -- 2.1 Trajectory Analysis of Gliding Among Individual Diatom Cells Using Microchamber Systems -- 2.2 Direct Observation of Floating Phenomena of Individual Diatoms Using a "Tumbled" Microscope System -- 2.3 Three-Dimensional Physical Imaging of Living Diatom Cells Using a Holographic Microscope System -- Acknowledgements -- References -- 3 Recent Insights Into the Ultrastructure of Diatoms Using Scanning and Transmission Electron-Microscopy -- 3.1 Introduction -- 3.2 Scanning Electron Microscopy (SEM) of Diatoms -- 3.3 Transmission Electron Microscopy (TEM) of Diatoms -- 3.3.1 Limitations -- 3.4 Conclusion -- References -- 4 Atomic Force Microscopy Study of Diatoms -- 4.1 Introduction -- 4.2 Types of AFM Modes -- 4.3 Sample Preparation and Methods -- 4.4 Study of Diatom Ultrastructure Under AFM -- 4.5 Conclusion -- Glossary -- Acknowledgement -- References -- 5 Refractive Index Tomography for Diatom Analysis -- 5.1 Introduction -- 5.2 Fundamentals of PC-ODT -- 5.3 Experimental Setup for PC-ODT -- 5.4 Diatom RI Reconstructions with Bright-Field Illumination -- 5.5 Illumination Impact on PC-ODT Performance -- 5.6 Concluding Remarks -- Acknowledgement -- References -- 6 Luminescent Diatom Frustules: A Review on the Key Research Applications.
6.1 Introduction -- 6.2 Key Research Applications of Luminescence Properties of Diatom Frustules -- 6.2.1 Novel Nanophotonic and Optoelectronic Applications of Luminescent Diatom Frustules -- 6.2.2 Applications of Diatom Luminescence in Sensing -- 6.2.3 Biomedical Applications of Diatom Luminescence -- 6.2.4 Other Studies on Diatom Luminescence -- 6.3 Future Perspectives -- 6.4 Conclusion -- Acknowledgement -- References -- 7 Micro to Nano Ornateness of Diatoms from Geographically Distant Origins of the Globe -- 7.1 Introduction -- 7.2 Materials and Methods -- 7.2.1 Diatom Samples and Microscopy -- 7.2.1.1 By Michael J. Stringer -- 7.2.1.2 Diatom Oamaru Slides by Diane Winter -- 7.2.1.3 By Daniel Mathys -- 7.2.1.4 Diatom Sampling, Slide Preparation and Imaging from Himalayas, Plains and Arabian Sea, India -- 7.3 Diatoms from Different Geographical Origins of the World -- 7.3.1 Oamaru Diatoms -- 7.3.2 Diatom Images Gifted by Michael J. Stringer -- 7.3.3 Diatoms from Natural History Museum Basel, Switzerland a Piece of Art by Daniel Mathys -- 7.3.4 Diatoms from India -- 7.4 Conclusion -- 7.5 Acknowledgements -- References -- 8 Types of X-Ray Techniques for Diatom Research -- 8.1 Introduction -- 8.2 Applications -- 8.2.1 Synchrotron Radiation-Based X-Ray Techniques -- 8.2.2 X-Ray Computed Tomography -- 8.2.3 X-Ray Fluorescence-Based Techniques -- 8.2.4 X-Ray Microanalysis -- 8.2.5 X-Ray Absorption-Based Techniques -- 8.2.6 X-Ray Diffraction -- 8.2.7 Other X-Ray-Based Techniques -- 8.3 Conclusions -- Glossary -- References -- 9 Diatom Assisted SERS -- 9.1 Introduction -- 9.2 Diatom -- 9.2.1 Basic Overview -- 9.2.2 Physiological Characteristics -- 9.2.3 Optical and Relevant Properties -- 9.3 Raman Scattering -- 9.3.1 Basics -- 9.3.2 Surface Enhanced Raman Scattering -- 9.3.3 Optoelectronic Investigations.
9.4 SERS Through Diatom: Fundamentals and Application Overview -- 9.5 Conclusion and Future Outlook -- References -- 10 Diatoms as Sensors and Their Applications -- 10.1 Introduction -- 10.2 Diatoms as Biosensors -- 10.2.1 Electrochemical Sensors -- 10.2.2 Plasmonic Sensors -- 10.2.3 Immunoassay Sensors -- 10.2.4 Optical and Optofluidic Sensors -- 10.2.5 Biochemical Sensors -- 10.2.6 FRET-Based Sensors -- 10.2.7 Microfluidics-Based Sensors -- 10.3 Conclusion -- Acknowledgments -- References -- 11 Diatom Frustules: A Transducer Platform for Optical Detection of Molecules -- 11.1 Introduction -- 11.2 Optical Properties of Diatom Frustules -- 11.2.1 Diatom as a Photoluminescent Materials -- 11.2.2 Diatom as a Photonic Crystal -- 11.2.3 Diatoms as a SERS Substrate -- 11.3 Methods Involved in Thin Film Deposition of Diatom Frustules -- 11.4 Diatom as an Optical Transducer for Biosensors -- 11.5 Diatom as an Optical Transducer for Gas/ Chemical Sensors -- 11.6 Conclusion -- References -- 12 Effects of Light on Physico-Chemical Properties of Diatoms -- 12.1 Introduction -- 12.2 Effect of Light on Diatom Function and Morphology -- 12.2.1 Effect of Light Intensity on Diatom Morphology -- 12.2.2 Effect of Light Intensity on Diatom Growth -- 12.2.3 Effect of Light Intensity on Photosynthesis in Diatoms -- 12.2.4 Effect of Wavelength of Light on Diatom Pigment System -- 12.2.5 Effect of Light Intensity on the Physiology of Diatoms -- 12.3 Conclusion -- Acknowledgment -- References -- Index -- Also of Interest -- EULA.
Record Nr. UNINA-9910831095003321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diatom morphogenesis / / edited by Joseph Seckbach, Vadim V. Annenkov, Richard Gordon
Diatom morphogenesis / / edited by Joseph Seckbach, Vadim V. Annenkov, Richard Gordon
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , 2022
Descrizione fisica 1 online resource (448 pages)
Disciplina 579.85
Collana Diatoms: Biology and Applications
Soggetto topico Diatoms
Morphogenesis
Soggetto genere / forma Electronic books.
ISBN 1-119-48813-3
1-119-48817-6
1-119-48819-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: General Issues -- 1 Introduction for a Tutorial on Diatom Morphology -- 1.1 Diatoms in Brief -- 1.2 Tools to Explore Diatom Frustule Morphology -- 1.3 Diatom Frustule 3D Reconstruction -- 1.3.1 Recommended Steps to Understand the Complex Diatom Morphology: A Guide for Beginners -- 1.4 Conclusion -- Acknowledgements -- References -- 2 The Uncanny Symmetry of Some Diatoms and Not of Others: A Multi-Scale Morphological Characteristic and a Puzzle for Morphogenesis* -- 2.1 Introduction -- 2.1.1 Recognition and Symmetry -- 2.1.2 Symmetry and Growth -- 2.1.3 Diatom Pattern Formation, Growth, and Symmetry -- 2.1.4 Diatoms and Uncanny Symmetry -- 2.1.5 Purpose of This Study -- 2.2 Methods -- 2.2.1 Centric Diatom Images Used for Analysis -- 2.2.2 Centric Diatoms, Morphology, and Valve Formation -- 2.2.3 Image Entropy and Symmetry Measurement -- 2.2.4 Image Preparation for Measurement -- 2.2.5 Image Tilt and Slant Measurement Correction for Entropy Values -- 2.2.6 Symmetry Analysis -- 2.2.7 Entropy, Symmetry, and Stability -- 2.2.8 Randomness and Instability -- 2.3 Results -- 2.3.1 Symmetry Analysis -- 2.3.2 Valve Formation-Stability and Instability Analyses -- 2.4 Discussion -- 2.4.1 Symmetry and Scale in Diatoms -- 2.4.2 Valve Formation and Stability -- 2.4.3 Symmetry, Stability and Diatom Morphogenesis -- 2.4.4 Future Research-Symmetry, Stability and Directionality in Diatom Morphogenesis -- References -- 3 On the Size Sequence of Diatoms in Clonal Chains -- 3.1 Introduction -- 3.2 Mathematical Analysis of t he Size Sequence -- 3.2.1 Alternative Method for Calculating the Size Sequence -- 3.2.2 Self-Similarity and Fractal Structure -- 3.2.3 Matching Fragments to a Generation Based on Known SizeIndices of the Fragment.
3.2.4 Sequence of the Differences of the Size Indices -- 3.2.5 Matching Fragments to a Generation Based on Unknown SizeIndices of the Fragment -- 3.2.6 Synchronicity of Cell Divisions -- 3.3 Observations -- 3.3.1 Challenges in Verifying the Sequence of Sizes -- 3.3.2 Materials and Methods -- 3.3.3 Investigation of the Size Sequence of a Eunotia sp. -- 3.3.4 Synchronicity -- 3.4 Conclusions -- Acknowledgements -- Appendix 3A L-System for the Generation of the Sequence of Differences in Size Indices of Adjacent Diatoms -- Appendix 3B Probability Consideration for Loss of Synchronicity -- References -- 4 Valve Morphogenesis in Amphitetrasantediluviana Ehrenberg -- 4.1 Introduction -- 4.2 Material and Methods -- 4.3 Observations -- 4.3.1 Amphitetras antediluviana Mature Valves -- 4.3.2 Amphitetras antediluviana Forming Valves -- 4.3.3 Amphitetras antediluviana Girdle Band Formation -- 4.4 Conclusion -- Acknowledgments -- References -- Part 2: Simulation -- 5 Geometric Models of Concentric and Spiral Areola Patterns of Centric Diatoms -- 5.1 Introduction -- 5.2 Set of Common Rules Used in the Models -- 5.3 Concentric Pattern of Areolae -- 5.4 Spiral Patterns of Areolae -- 5.4.1 Unidirectional Spiral Pattern -- 5.4.2 Bidirectional Spiral Pattern -- 5.4.3 Common Genesis of Unidirectional and Bidirectional Spiral Patterns -- 5.5 Conversion of an Areolae-Based Model Into a Frame-Based Model -- 5.6 Conclusion -- Acknowledgements -- References -- 6 Diatom Pore Arrays' Periodicities and Symmetries in the Euclidean Plane: Nature Between Perfection and Imperfection -- 6.1 Introduction -- 6.2 Materials and Methods -- 6.2.1 Micrograph Segmentation -- 6.2.2 Two-Dimensional Fast Fourier Analysis and Autocorrelation Function Analysis -- 6.2.3 Lattice Measurements and Recognition -- 6.2.4 Accuracy of 2D ACF-Based Calculations.
6.2.5 The Perfection of the Unit Cell Parameters Between Different Parts (Groups of Pore Arrays) of the Same Valve and the Same Micrograph -- 6.3 Results and Discussion -- 6.3.1 Toward Standardization of the Methodology for the Recognition of 2D Periodicities of Pore Arrays in Diatom Micrographs -- 6.3.1.1 Using Two-Dimensional Fast Fourier Transform Analysis -- 6.3.1.2 Using Two-Dimensional Autocorrelation Function -- 6.3.1.3 The Accuracy of Lattice Parameters' Measurements Using the Proposed 2D ACF Analysis -- 6.3.2 Exploring the Periodicity in Our Studied Micrographs and the Possible Presence of Different Types of 2D Lattices in Diatoms -- 6.3.2.1 Irregular Pore Scattering (Non-Periodic Pores) -- 6.3.2.2 Linear Periodicity of Pores in Striae (1D Periodicity) -- 6.3.2.3 The Different 2D Lattices in Diatom Pore Arrays -- 6.3.3 How Perfectly Can Diatoms Build Their 2D Pore Arrays? -- 6.3.3.1 Variation of the 2D Lattice Within the Connected Pore Array of the Valve -- 6.3.3.2 Comparison of 2D Lattice Parameters and Degree of Perfection of Distinct Pore Array Groups in the Same Micrograph and Va -- 6.3.3.3 The Perfection of 2D Lattices of Diatom Pore Arrays Compared to Perfect (Non-Oblique) 2D Bravais Lattices -- 6.3.4 Planar Symmetry Groups to Describe the Whole Diatom Valve Symmetries and Additionally Describe the Complicated 2D Periodic Pore Arrays' Symmetries -- 6.3.4.1 Rosette Groups -- 6.3.4.2 Frieze Groups -- 6.3.4.3 Wallpaper Groups -- 6.4 Conclusion -- Acknowledgment -- Glossary -- References -- 7 Quantified Ensemble 3D Surface Features Modeled as a Window on Centric Diatom Valve Morphogenesis -- 7.1 Introduction -- 7.1.1 From 3D Surface Morphology to Morphogenesis -- 7.1.2 Geometric Basis of 3D Surface Models and Analysis -- 7.1.3 Differential Geometry of 3D Surface -- 7.1.4 3D Surface Feature Geometry and Morphological Attributes.
7.1.5 Centric Diatom Taxa Used as Exemplars in 3D Surface Models for Morphogenetic Analysis -- 7.1.6 Morphogenetic Descriptors of Centric Diatoms in Valve Formation as Sequential Change in 3D Surface Morphology -- 7.1.7 Purposes of This Study -- 7.2 Methods -- 7.2.1 Measurement of Ensemble Surface Features and 3D Surface Morphology: Derivation and Solution of the Jacobian, Hessian, Laplacian, and Christoffel Symbols -- 7.2.1.1 The Jacobian of 3D Surface Morphology -- 7.2.1.2 Monge Patch -- 7.2.1.3 First and Second Fundamental Forms and Surface Characterization of the Monge Patch -- 7.2.1.4 3D Surface Characterization via Gauss and Weingarten Maps and the Fundamental Forms -- 7.2.1.5 Peaks, Valleys, and Saddles of Surface Morphology and the Hessian -- 7.2.1.6 Smoothness as a Characterization of Surface Morphology and the Laplacian -- 7.2.1.7 Point Connections of 3D Surface Morphology and Christoffel Symbols -- 7.2.1.8 Protocol for Using Centric Diatom 3D Surface Models and Their Ensemble Surface Features in Valve Formation Analysis -- 7.3 Results -- 7.4 Discussion -- 7.4.1 Ensemble Surface Features and Physical Characteristics of Valve Morphogenesis -- 7.4.2 Factors Affecting Valve Formation -- 7.4.3 Diatom Growth Patterns-Buckling and Wave Fronts -- 7.4.4 Valve Formation, Ensemble Surface Features, and Self-Similarity -- 7.4.5 Diatom Morphogenesis: Cytoplasmic Inheritance and Phenotypic Plasticity -- 7.4.6 Phenotypic Variation and Ensemble Surface Features: Epistasis and Canalization -- 7.5 Conclusions -- Acknowledgment -- References -- 8 Buckling: A Geometric and Biophysical Multiscale Feature of Centric Diatom Valve Morphogenesis -- 8.1 Introduction -- 8.2 Purpose of Study -- 8.3 Background: Multiscale Diatom Morphogenesis -- 8.3.1 Valve Morphogenesis-Schemata of Schmid and Volcani and of Hildebrand, Lerch, and Shrestha.
8.3.2 Valve Formation-An Overview at the Microscale -- 8.3.3 Valve Formation-An Overview at the Mesoand Microscale -- 8.3.4 Valve Formation-An Overview at the Mesoand Nanoscale -- 8.4 Biophysics of Diatom Valve Formation and Buckling -- 8.4.1 Buckling as a Multiscale Measure of Valve Formation -- 8.4.2 Valve Formation-Cytoplasmic Features and Buckling -- 8.4.3 Buckling: Microtubule Filaments and Bundles -- 8.4.4 Buckling: Actin Filament Ring -- 8.5 Geometrical and Biophysical Aspects of Buckling and Valve Formation -- 8.5.1 Buckling: Geometry of Valve Formation as a Multiscale Wave Front -- 8.5.2 Buckling: Valve Formation and Hamiltonian Biophysics -- 8.5.3 Buckling: Valve Formation and Deformation Gradients -- 8.5.4 Buckling: Multiscale Measurement With Respect to Valve Formation -- 8.5.5 Buckling: Krylov Methods and Association of Valve Surface Buckling With Microtubule and Actin Buckling -- 8.6 Methods -- 8.6.1 Constructing and Analyzing 3D Valve Surface and 2D Microtubule and Actin Filament Models -- 8.6.2 Krylov Methods: Associating Valve Surface With Microtubule and Actin Filament Buckling -- 8.7 Results -- 8.8 Conclusion -- References -- 9. Are Mantle Profiles of Circular Centric Diatoms a Measure of Buckling Forces During Valve Morphogenesis? -- 9.1 Introduction -- 9.2 Methods -- 9.2.1 Background: Circular Centric 2D Profiles and 3D Surfaces of Revolution -- 9.3 Results -- 9.3.1 Approximate Constant Profile Length Representing Approximate Same Sized Valves -- 9.3.2 Change in Profile Length Representing Size Reduction During Valve Morphogenesis -- 9.3.3 Are Profiles Measures of Buckling Forces During Valve Morphogenesis? -- 9.4 Discussion -- 9.4.1 Laminated Structures and Mantle Buckling Forces Affecting the Valve Profile -- 9.5 Conclusion -- Acknowledgement -- References -- Part 3: Physiology, Biochemistry and Applications.
10 The Effect of the Silica Cell Wall on Diatom Transport and Metabolism*.
Record Nr. UNINA-9910555011303321
Hoboken, NJ : , : John Wiley & Sons, Inc., , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diatom morphogenesis / / edited by Joseph Seckbach, Vadim V. Annenkov, Richard Gordon
Diatom morphogenesis / / edited by Joseph Seckbach, Vadim V. Annenkov, Richard Gordon
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , 2022
Descrizione fisica 1 online resource (448 pages)
Disciplina 579.85
Collana Diatoms: Biology and Applications
Soggetto topico Diatoms
Morphogenesis
ISBN 1-119-48813-3
1-119-48817-6
1-119-48819-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: General Issues -- 1 Introduction for a Tutorial on Diatom Morphology -- 1.1 Diatoms in Brief -- 1.2 Tools to Explore Diatom Frustule Morphology -- 1.3 Diatom Frustule 3D Reconstruction -- 1.3.1 Recommended Steps to Understand the Complex Diatom Morphology: A Guide for Beginners -- 1.4 Conclusion -- Acknowledgements -- References -- 2 The Uncanny Symmetry of Some Diatoms and Not of Others: A Multi-Scale Morphological Characteristic and a Puzzle for Morphogenesis* -- 2.1 Introduction -- 2.1.1 Recognition and Symmetry -- 2.1.2 Symmetry and Growth -- 2.1.3 Diatom Pattern Formation, Growth, and Symmetry -- 2.1.4 Diatoms and Uncanny Symmetry -- 2.1.5 Purpose of This Study -- 2.2 Methods -- 2.2.1 Centric Diatom Images Used for Analysis -- 2.2.2 Centric Diatoms, Morphology, and Valve Formation -- 2.2.3 Image Entropy and Symmetry Measurement -- 2.2.4 Image Preparation for Measurement -- 2.2.5 Image Tilt and Slant Measurement Correction for Entropy Values -- 2.2.6 Symmetry Analysis -- 2.2.7 Entropy, Symmetry, and Stability -- 2.2.8 Randomness and Instability -- 2.3 Results -- 2.3.1 Symmetry Analysis -- 2.3.2 Valve Formation-Stability and Instability Analyses -- 2.4 Discussion -- 2.4.1 Symmetry and Scale in Diatoms -- 2.4.2 Valve Formation and Stability -- 2.4.3 Symmetry, Stability and Diatom Morphogenesis -- 2.4.4 Future Research-Symmetry, Stability and Directionality in Diatom Morphogenesis -- References -- 3 On the Size Sequence of Diatoms in Clonal Chains -- 3.1 Introduction -- 3.2 Mathematical Analysis of t he Size Sequence -- 3.2.1 Alternative Method for Calculating the Size Sequence -- 3.2.2 Self-Similarity and Fractal Structure -- 3.2.3 Matching Fragments to a Generation Based on Known SizeIndices of the Fragment.
3.2.4 Sequence of the Differences of the Size Indices -- 3.2.5 Matching Fragments to a Generation Based on Unknown SizeIndices of the Fragment -- 3.2.6 Synchronicity of Cell Divisions -- 3.3 Observations -- 3.3.1 Challenges in Verifying the Sequence of Sizes -- 3.3.2 Materials and Methods -- 3.3.3 Investigation of the Size Sequence of a Eunotia sp. -- 3.3.4 Synchronicity -- 3.4 Conclusions -- Acknowledgements -- Appendix 3A L-System for the Generation of the Sequence of Differences in Size Indices of Adjacent Diatoms -- Appendix 3B Probability Consideration for Loss of Synchronicity -- References -- 4 Valve Morphogenesis in Amphitetrasantediluviana Ehrenberg -- 4.1 Introduction -- 4.2 Material and Methods -- 4.3 Observations -- 4.3.1 Amphitetras antediluviana Mature Valves -- 4.3.2 Amphitetras antediluviana Forming Valves -- 4.3.3 Amphitetras antediluviana Girdle Band Formation -- 4.4 Conclusion -- Acknowledgments -- References -- Part 2: Simulation -- 5 Geometric Models of Concentric and Spiral Areola Patterns of Centric Diatoms -- 5.1 Introduction -- 5.2 Set of Common Rules Used in the Models -- 5.3 Concentric Pattern of Areolae -- 5.4 Spiral Patterns of Areolae -- 5.4.1 Unidirectional Spiral Pattern -- 5.4.2 Bidirectional Spiral Pattern -- 5.4.3 Common Genesis of Unidirectional and Bidirectional Spiral Patterns -- 5.5 Conversion of an Areolae-Based Model Into a Frame-Based Model -- 5.6 Conclusion -- Acknowledgements -- References -- 6 Diatom Pore Arrays' Periodicities and Symmetries in the Euclidean Plane: Nature Between Perfection and Imperfection -- 6.1 Introduction -- 6.2 Materials and Methods -- 6.2.1 Micrograph Segmentation -- 6.2.2 Two-Dimensional Fast Fourier Analysis and Autocorrelation Function Analysis -- 6.2.3 Lattice Measurements and Recognition -- 6.2.4 Accuracy of 2D ACF-Based Calculations.
6.2.5 The Perfection of the Unit Cell Parameters Between Different Parts (Groups of Pore Arrays) of the Same Valve and the Same Micrograph -- 6.3 Results and Discussion -- 6.3.1 Toward Standardization of the Methodology for the Recognition of 2D Periodicities of Pore Arrays in Diatom Micrographs -- 6.3.1.1 Using Two-Dimensional Fast Fourier Transform Analysis -- 6.3.1.2 Using Two-Dimensional Autocorrelation Function -- 6.3.1.3 The Accuracy of Lattice Parameters' Measurements Using the Proposed 2D ACF Analysis -- 6.3.2 Exploring the Periodicity in Our Studied Micrographs and the Possible Presence of Different Types of 2D Lattices in Diatoms -- 6.3.2.1 Irregular Pore Scattering (Non-Periodic Pores) -- 6.3.2.2 Linear Periodicity of Pores in Striae (1D Periodicity) -- 6.3.2.3 The Different 2D Lattices in Diatom Pore Arrays -- 6.3.3 How Perfectly Can Diatoms Build Their 2D Pore Arrays? -- 6.3.3.1 Variation of the 2D Lattice Within the Connected Pore Array of the Valve -- 6.3.3.2 Comparison of 2D Lattice Parameters and Degree of Perfection of Distinct Pore Array Groups in the Same Micrograph and Va -- 6.3.3.3 The Perfection of 2D Lattices of Diatom Pore Arrays Compared to Perfect (Non-Oblique) 2D Bravais Lattices -- 6.3.4 Planar Symmetry Groups to Describe the Whole Diatom Valve Symmetries and Additionally Describe the Complicated 2D Periodic Pore Arrays' Symmetries -- 6.3.4.1 Rosette Groups -- 6.3.4.2 Frieze Groups -- 6.3.4.3 Wallpaper Groups -- 6.4 Conclusion -- Acknowledgment -- Glossary -- References -- 7 Quantified Ensemble 3D Surface Features Modeled as a Window on Centric Diatom Valve Morphogenesis -- 7.1 Introduction -- 7.1.1 From 3D Surface Morphology to Morphogenesis -- 7.1.2 Geometric Basis of 3D Surface Models and Analysis -- 7.1.3 Differential Geometry of 3D Surface -- 7.1.4 3D Surface Feature Geometry and Morphological Attributes.
7.1.5 Centric Diatom Taxa Used as Exemplars in 3D Surface Models for Morphogenetic Analysis -- 7.1.6 Morphogenetic Descriptors of Centric Diatoms in Valve Formation as Sequential Change in 3D Surface Morphology -- 7.1.7 Purposes of This Study -- 7.2 Methods -- 7.2.1 Measurement of Ensemble Surface Features and 3D Surface Morphology: Derivation and Solution of the Jacobian, Hessian, Laplacian, and Christoffel Symbols -- 7.2.1.1 The Jacobian of 3D Surface Morphology -- 7.2.1.2 Monge Patch -- 7.2.1.3 First and Second Fundamental Forms and Surface Characterization of the Monge Patch -- 7.2.1.4 3D Surface Characterization via Gauss and Weingarten Maps and the Fundamental Forms -- 7.2.1.5 Peaks, Valleys, and Saddles of Surface Morphology and the Hessian -- 7.2.1.6 Smoothness as a Characterization of Surface Morphology and the Laplacian -- 7.2.1.7 Point Connections of 3D Surface Morphology and Christoffel Symbols -- 7.2.1.8 Protocol for Using Centric Diatom 3D Surface Models and Their Ensemble Surface Features in Valve Formation Analysis -- 7.3 Results -- 7.4 Discussion -- 7.4.1 Ensemble Surface Features and Physical Characteristics of Valve Morphogenesis -- 7.4.2 Factors Affecting Valve Formation -- 7.4.3 Diatom Growth Patterns-Buckling and Wave Fronts -- 7.4.4 Valve Formation, Ensemble Surface Features, and Self-Similarity -- 7.4.5 Diatom Morphogenesis: Cytoplasmic Inheritance and Phenotypic Plasticity -- 7.4.6 Phenotypic Variation and Ensemble Surface Features: Epistasis and Canalization -- 7.5 Conclusions -- Acknowledgment -- References -- 8 Buckling: A Geometric and Biophysical Multiscale Feature of Centric Diatom Valve Morphogenesis -- 8.1 Introduction -- 8.2 Purpose of Study -- 8.3 Background: Multiscale Diatom Morphogenesis -- 8.3.1 Valve Morphogenesis-Schemata of Schmid and Volcani and of Hildebrand, Lerch, and Shrestha.
8.3.2 Valve Formation-An Overview at the Microscale -- 8.3.3 Valve Formation-An Overview at the Mesoand Microscale -- 8.3.4 Valve Formation-An Overview at the Mesoand Nanoscale -- 8.4 Biophysics of Diatom Valve Formation and Buckling -- 8.4.1 Buckling as a Multiscale Measure of Valve Formation -- 8.4.2 Valve Formation-Cytoplasmic Features and Buckling -- 8.4.3 Buckling: Microtubule Filaments and Bundles -- 8.4.4 Buckling: Actin Filament Ring -- 8.5 Geometrical and Biophysical Aspects of Buckling and Valve Formation -- 8.5.1 Buckling: Geometry of Valve Formation as a Multiscale Wave Front -- 8.5.2 Buckling: Valve Formation and Hamiltonian Biophysics -- 8.5.3 Buckling: Valve Formation and Deformation Gradients -- 8.5.4 Buckling: Multiscale Measurement With Respect to Valve Formation -- 8.5.5 Buckling: Krylov Methods and Association of Valve Surface Buckling With Microtubule and Actin Buckling -- 8.6 Methods -- 8.6.1 Constructing and Analyzing 3D Valve Surface and 2D Microtubule and Actin Filament Models -- 8.6.2 Krylov Methods: Associating Valve Surface With Microtubule and Actin Filament Buckling -- 8.7 Results -- 8.8 Conclusion -- References -- 9. Are Mantle Profiles of Circular Centric Diatoms a Measure of Buckling Forces During Valve Morphogenesis? -- 9.1 Introduction -- 9.2 Methods -- 9.2.1 Background: Circular Centric 2D Profiles and 3D Surfaces of Revolution -- 9.3 Results -- 9.3.1 Approximate Constant Profile Length Representing Approximate Same Sized Valves -- 9.3.2 Change in Profile Length Representing Size Reduction During Valve Morphogenesis -- 9.3.3 Are Profiles Measures of Buckling Forces During Valve Morphogenesis? -- 9.4 Discussion -- 9.4.1 Laminated Structures and Mantle Buckling Forces Affecting the Valve Profile -- 9.5 Conclusion -- Acknowledgement -- References -- Part 3: Physiology, Biochemistry and Applications.
10 The Effect of the Silica Cell Wall on Diatom Transport and Metabolism*.
Record Nr. UNINA-9910830739203321
Hoboken, NJ : , : John Wiley & Sons, Inc., , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diatoms : fundamentals and applications / / edited by Joseph Seckbach and Richard Gordon
Diatoms : fundamentals and applications / / edited by Joseph Seckbach and Richard Gordon
Pubbl/distr/stampa Beverly, Massachusetts, USA : , : Scrivener Publishing : , : Wiley, , 2019
Descrizione fisica 1 online resource (825 pages)
Disciplina 579.85
Collana THEi Wiley ebooks.
Soggetto topico Diatoms
ISBN 1-119-37073-6
1-119-37074-4
1-119-37072-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555185503321
Beverly, Massachusetts, USA : , : Scrivener Publishing : , : Wiley, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diatoms : fundamentals and applications / / edited by Joseph Seckbach and Richard Gordon
Diatoms : fundamentals and applications / / edited by Joseph Seckbach and Richard Gordon
Pubbl/distr/stampa Beverly, Massachusetts, USA : , : Scrivener Publishing : , : Wiley, , 2019
Descrizione fisica 1 online resource (825 pages)
Disciplina 579.85
Collana THEi Wiley ebooks.
Soggetto topico Diatoms
ISBN 1-119-37073-6
1-119-37074-4
1-119-37072-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910807612903321
Beverly, Massachusetts, USA : , : Scrivener Publishing : , : Wiley, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Habitability of the universe before earth / / volume editors, Richard Gordon, Alexei A. Sharov
Habitability of the universe before earth / / volume editors, Richard Gordon, Alexei A. Sharov
Pubbl/distr/stampa Cambridge, Massachusetts : , : Academic Press, , 2018
Descrizione fisica 1 online resource (535 pages) : illustrations (some color), charts, photographs
Disciplina 576.83
Collana Astrobiology: Exploring Life on Earth and Beyond
Soggetto topico Exobiology
Habitable planets
ISBN 0-12-811941-1
0-12-811940-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583067703321
Cambridge, Massachusetts : , : Academic Press, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui