Fourier analysis and boundary value problems [[electronic resource] /] / by Enrique A. González-Velasco |
Autore | González-Velasco Enrique A |
Pubbl/distr/stampa | San Diego, : Academic Pres, c1995 |
Descrizione fisica | 1 online resource (565 p.) |
Disciplina | 515/.353 |
Soggetto topico |
Fourier analysis
Boundary value problems - Numerical solutions |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-03822-9
9786611038229 0-08-053193-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Fourier Analysis and Boundary Value Problems; Copyright Page; Table of Contents; Preface; CHAPTER 1. A HEATED DISCUSSION; 1.1 Historical Prologue; 1.2 The Heat Equation; 1.3 Boundary Value Problems; 1.4 The Method of Separation of Variables; 1.5 Linearity and Superposition of Solutions; 1.6 Historical Epilogue; Exercises; CHAPTER 2. FOURIER SERIES; 2.1 Introduction; 2.2 Fourier Series; 2.3 The Riemann-Lebesgue Theorem; 2.4 The Convergence of Fourier Series; 2.5 Fourier Series on Arbitrary Intervals; 2.6 The Gibbs Phenomenon; 2.7 Fejér Sums; 2.8 Integration of Fourier Series
2.9 Historical EpilogueExercises; CHAPTER 3. RETURN TO THE HEATED BAR; 3.1 Existence of a Solution; 3.2 Uniqueness and Stability of the Solution; 3.3 Nonzero Temperature at the Endpoints; 3.4 Bar Insulated at the Endpoints; 3.5 Mixed Endpoint Conditions; 3.6 Heat Convection at One Endpoint; 3.7 Time-Independent Problems; 3.8 The Steady-State Solution; 3.9 The Transient Solution; 3.10 The Complete Solution; 3.11 Time-Dependent Problems; Exercises; CHAPTER 4. GENERALIZED FOURIER SERIES; 4.1 Sturm-Liouville Problems; 4.2 The Eigenvalues and Eigenfunctions; 4.3 The Existence of the Eigenvalues 4.4 Generalized Fourier Series4.5 Approximations; 4.6 Historical Epilogue; Exercises; CHAPTER 5. THE WAVE EQUATION; 5.1 Introduction; 5.2 The Vibrating String; 5.3 D'Alembert's Solution; 5.4 A Struck String; 5.5 Bernoulli's Solution; 5.6 Time-Independent Problems; 5.7 Time-Dependent Problems; 5.8 Historical Epilogue; Exercises; CHAPTER 6. ORTHOGONAL SYSTEMS; 6.1 Fourier Series and Parseval's Identity; 6.2 An Approximation Problem; 6.3 The Uniform Convergence of Fourier Series; 6.4 Convergence in the Mean; 6.5 Applications to the Vibrating String; 6.6 The Riesz-Fischer Theorem; Exercises CHAPTER 7. FOURIER TRANSFORMS7.1 The Laplace Equation; 7.2 Fourier Transforms; 7.3 Properties of the Fourier Transform; 7.4 Convolution; 7.5 Solution of the Dirichlet Problem for the Half-Plane; 7.6 The Fourier Transform Method; Exercises; CHAPTER 8. LAPLACE TRANSFORMS; 8.1 The Laplace Transform and the Inversion Theorem; 8.2 Properties of the Laplace Transform; 8.3 Convolution; 8.4 The Telegraph Equation; 8.5 The Method of Residues; 8.6 Historical Epilogue; Exercises; CHAPTER 9. BOUNDARY VALUE PROBLEMS IN HIGHER DIMENSIONS; 9.1 Electrostatic Potential in a Charged Box 9.2 Double Fourier Series9.3 The Dirichlet Problem in a Box; 9.4 Return to the Charged Box; 9.5 The Multiple Fourier Transform Method; 9.6 The Double Laplace Transform Method; Exercises; CHAPTER 10. BOUNDARY VALUE PROBLEMS WITH CIRCULAR SYMMETRY; 10.1 Vibrations of a Circular Membrane; 10.2 The Gamma Function; 10.3 Bessel Functions of the First Kind; 10.4 Recursion Formulas for Bessel Functions; 10.5 Bessel Functions of the Second Kind; 10.6 The Zeros of Bessel Functions; 10.7 Orthogonal Systems of Bessel Functions; 10.8 Fourier-Bessel Series and Dini-Bessel Series 10.9 Return to the Vibrating Membrane |
Record Nr. | UNINA-9910458660803321 |
González-Velasco Enrique A | ||
San Diego, : Academic Pres, c1995 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fourier analysis and boundary value problems [[electronic resource] /] / by Enrique A. González-Velasco |
Autore | González-Velasco Enrique A |
Pubbl/distr/stampa | San Diego, : Academic Pres, c1995 |
Descrizione fisica | 1 online resource (565 p.) |
Disciplina | 515/.353 |
Soggetto topico |
Fourier analysis
Boundary value problems - Numerical solutions |
ISBN |
1-281-03822-9
9786611038229 0-08-053193-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Fourier Analysis and Boundary Value Problems; Copyright Page; Table of Contents; Preface; CHAPTER 1. A HEATED DISCUSSION; 1.1 Historical Prologue; 1.2 The Heat Equation; 1.3 Boundary Value Problems; 1.4 The Method of Separation of Variables; 1.5 Linearity and Superposition of Solutions; 1.6 Historical Epilogue; Exercises; CHAPTER 2. FOURIER SERIES; 2.1 Introduction; 2.2 Fourier Series; 2.3 The Riemann-Lebesgue Theorem; 2.4 The Convergence of Fourier Series; 2.5 Fourier Series on Arbitrary Intervals; 2.6 The Gibbs Phenomenon; 2.7 Fejér Sums; 2.8 Integration of Fourier Series
2.9 Historical EpilogueExercises; CHAPTER 3. RETURN TO THE HEATED BAR; 3.1 Existence of a Solution; 3.2 Uniqueness and Stability of the Solution; 3.3 Nonzero Temperature at the Endpoints; 3.4 Bar Insulated at the Endpoints; 3.5 Mixed Endpoint Conditions; 3.6 Heat Convection at One Endpoint; 3.7 Time-Independent Problems; 3.8 The Steady-State Solution; 3.9 The Transient Solution; 3.10 The Complete Solution; 3.11 Time-Dependent Problems; Exercises; CHAPTER 4. GENERALIZED FOURIER SERIES; 4.1 Sturm-Liouville Problems; 4.2 The Eigenvalues and Eigenfunctions; 4.3 The Existence of the Eigenvalues 4.4 Generalized Fourier Series4.5 Approximations; 4.6 Historical Epilogue; Exercises; CHAPTER 5. THE WAVE EQUATION; 5.1 Introduction; 5.2 The Vibrating String; 5.3 D'Alembert's Solution; 5.4 A Struck String; 5.5 Bernoulli's Solution; 5.6 Time-Independent Problems; 5.7 Time-Dependent Problems; 5.8 Historical Epilogue; Exercises; CHAPTER 6. ORTHOGONAL SYSTEMS; 6.1 Fourier Series and Parseval's Identity; 6.2 An Approximation Problem; 6.3 The Uniform Convergence of Fourier Series; 6.4 Convergence in the Mean; 6.5 Applications to the Vibrating String; 6.6 The Riesz-Fischer Theorem; Exercises CHAPTER 7. FOURIER TRANSFORMS7.1 The Laplace Equation; 7.2 Fourier Transforms; 7.3 Properties of the Fourier Transform; 7.4 Convolution; 7.5 Solution of the Dirichlet Problem for the Half-Plane; 7.6 The Fourier Transform Method; Exercises; CHAPTER 8. LAPLACE TRANSFORMS; 8.1 The Laplace Transform and the Inversion Theorem; 8.2 Properties of the Laplace Transform; 8.3 Convolution; 8.4 The Telegraph Equation; 8.5 The Method of Residues; 8.6 Historical Epilogue; Exercises; CHAPTER 9. BOUNDARY VALUE PROBLEMS IN HIGHER DIMENSIONS; 9.1 Electrostatic Potential in a Charged Box 9.2 Double Fourier Series9.3 The Dirichlet Problem in a Box; 9.4 Return to the Charged Box; 9.5 The Multiple Fourier Transform Method; 9.6 The Double Laplace Transform Method; Exercises; CHAPTER 10. BOUNDARY VALUE PROBLEMS WITH CIRCULAR SYMMETRY; 10.1 Vibrations of a Circular Membrane; 10.2 The Gamma Function; 10.3 Bessel Functions of the First Kind; 10.4 Recursion Formulas for Bessel Functions; 10.5 Bessel Functions of the Second Kind; 10.6 The Zeros of Bessel Functions; 10.7 Orthogonal Systems of Bessel Functions; 10.8 Fourier-Bessel Series and Dini-Bessel Series 10.9 Return to the Vibrating Membrane |
Record Nr. | UNINA-9910784644503321 |
González-Velasco Enrique A | ||
San Diego, : Academic Pres, c1995 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|