Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane / / William Goldman [and three others]
| Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane / / William Goldman [and three others] |
| Autore | Goldman William Mark |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2019] |
| Descrizione fisica | 1 online resource (vii, 78 pages) : illustrations |
| Disciplina | 512.2 |
| Collana | Memoirs of the American Mathematical Society, volume 259, number 1249 |
| Soggetto topico |
Isometrics (Mathematics)
Group theory Automorphisms Hyperbolic spaces Free groups |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-5253-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910481046803321 |
Goldman William Mark
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane / / William Goldman [and three others]
| Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane / / William Goldman [and three others] |
| Autore | Goldman William Mark |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2019] |
| Descrizione fisica | 1 online resource (vii, 78 pages) : illustrations |
| Disciplina | 512.2 |
| Collana | Memoirs of the American Mathematical Society, volume 259, number 1249 |
| Soggetto topico |
Isometrics (Mathematics)
Group theory Automorphisms Hyperbolic spaces Free groups |
| ISBN | 1-4704-5253-7 |
| Classificazione | 57M0522D40 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910793620103321 |
Goldman William Mark
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane / / William Goldman [and three others]
| Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane / / William Goldman [and three others] |
| Autore | Goldman William Mark |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2019] |
| Descrizione fisica | 1 online resource (vii, 78 pages) : illustrations |
| Disciplina | 512.2 |
| Collana | Memoirs of the American Mathematical Society, volume 259, number 1249 |
| Soggetto topico |
Isometrics (Mathematics)
Group theory Automorphisms Hyperbolic spaces Free groups |
| ISBN | 1-4704-5253-7 |
| Classificazione | 57M0522D40 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910826252503321 |
Goldman William Mark
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Rank one Higgs bundles and representations of fundamental groups of Riemann surfaces / / William M. Goldman, Eugene Z. Xia
| Rank one Higgs bundles and representations of fundamental groups of Riemann surfaces / / William M. Goldman, Eugene Z. Xia |
| Autore | Goldman William Mark |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
| Descrizione fisica | 1 online resource (86 p.) |
| Disciplina | 516.3/6 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Surfaces, Deformation of
Riemann surfaces Geometry, Differential Geometry, Algebraic |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0510-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Introduction""; ""1. Equivalences of deformation theories""; ""2. The Betti and de Rham deformation theories and their moduli spaces""; ""2.1. The Betti groupoid""; ""2.2. The de Rham groupoid""; ""2.3. Equivalence of de Rham and Betti groupoids""; ""3. The Dolbeault groupoid""; ""3.1. Holomorphic line bundles""; ""3.2. The moduli spaces""; ""3.3. Geometric structure of the Dolbeault moduli space""; ""4. Equivalence of de Rham and Dolbeault groupoids""; ""4.1. Construction of the equivalence""; ""4.2. Higgs coordinates""; ""4.3. Involutions""
""5. Hyperkahler geometry on the moduli space""""5.1. The quaternionic structure""; ""5.2. The Riemannian metric""; ""5.3. Complex-symplectic structure""; ""5.4. Quaternionization""; ""6. The twistor space""; ""6.1. The complex projective line""; ""6.2. The twistor space as a smooth vector bundle""; ""6.3. A holomorphic atlas for the twistor space""; ""6.4. The twistor lines""; ""6.5. The real structure on the twistor space""; ""6.6. Symplectic geometry of the twistor space""; ""6.7. The lattice quotient""; ""6.8. Functions and flows""; ""7. The moduli space and the Riemann period matrix"" ""7.1. Coordinates for the Betti moduli space""""7.2. Abelian differentials and their periods""; ""7.3. Flat connections""; ""7.4. Higgs fields""; ""7.5. The C*-action in terms of the period matrix""; ""7.6. The C*-action and the real points""; ""Bibliography"" |
| Record Nr. | UNINA-9910480624203321 |
Goldman William Mark
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2008] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Rank one Higgs bundles and representations of fundamental groups of Riemann surfaces / / William M. Goldman, Eugene Z. Xia
| Rank one Higgs bundles and representations of fundamental groups of Riemann surfaces / / William M. Goldman, Eugene Z. Xia |
| Autore | Goldman William Mark |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
| Descrizione fisica | 1 online resource (86 p.) |
| Disciplina | 516.3/6 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Surfaces, Deformation of
Riemann surfaces Geometry, Differential Geometry, Algebraic |
| ISBN | 1-4704-0510-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Introduction""; ""1. Equivalences of deformation theories""; ""2. The Betti and de Rham deformation theories and their moduli spaces""; ""2.1. The Betti groupoid""; ""2.2. The de Rham groupoid""; ""2.3. Equivalence of de Rham and Betti groupoids""; ""3. The Dolbeault groupoid""; ""3.1. Holomorphic line bundles""; ""3.2. The moduli spaces""; ""3.3. Geometric structure of the Dolbeault moduli space""; ""4. Equivalence of de Rham and Dolbeault groupoids""; ""4.1. Construction of the equivalence""; ""4.2. Higgs coordinates""; ""4.3. Involutions""
""5. Hyperkahler geometry on the moduli space""""5.1. The quaternionic structure""; ""5.2. The Riemannian metric""; ""5.3. Complex-symplectic structure""; ""5.4. Quaternionization""; ""6. The twistor space""; ""6.1. The complex projective line""; ""6.2. The twistor space as a smooth vector bundle""; ""6.3. A holomorphic atlas for the twistor space""; ""6.4. The twistor lines""; ""6.5. The real structure on the twistor space""; ""6.6. Symplectic geometry of the twistor space""; ""6.7. The lattice quotient""; ""6.8. Functions and flows""; ""7. The moduli space and the Riemann period matrix"" ""7.1. Coordinates for the Betti moduli space""""7.2. Abelian differentials and their periods""; ""7.3. Flat connections""; ""7.4. Higgs fields""; ""7.5. The C*-action in terms of the period matrix""; ""7.6. The C*-action and the real points""; ""Bibliography"" |
| Record Nr. | UNINA-9910788852303321 |
Goldman William Mark
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2008] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Rank one Higgs bundles and representations of fundamental groups of Riemann surfaces / / William M. Goldman, Eugene Z. Xia
| Rank one Higgs bundles and representations of fundamental groups of Riemann surfaces / / William M. Goldman, Eugene Z. Xia |
| Autore | Goldman William Mark |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
| Descrizione fisica | 1 online resource (86 p.) |
| Disciplina | 516.3/6 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Surfaces, Deformation of
Riemann surfaces Geometry, Differential Geometry, Algebraic |
| ISBN | 1-4704-0510-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Introduction""; ""1. Equivalences of deformation theories""; ""2. The Betti and de Rham deformation theories and their moduli spaces""; ""2.1. The Betti groupoid""; ""2.2. The de Rham groupoid""; ""2.3. Equivalence of de Rham and Betti groupoids""; ""3. The Dolbeault groupoid""; ""3.1. Holomorphic line bundles""; ""3.2. The moduli spaces""; ""3.3. Geometric structure of the Dolbeault moduli space""; ""4. Equivalence of de Rham and Dolbeault groupoids""; ""4.1. Construction of the equivalence""; ""4.2. Higgs coordinates""; ""4.3. Involutions""
""5. Hyperkahler geometry on the moduli space""""5.1. The quaternionic structure""; ""5.2. The Riemannian metric""; ""5.3. Complex-symplectic structure""; ""5.4. Quaternionization""; ""6. The twistor space""; ""6.1. The complex projective line""; ""6.2. The twistor space as a smooth vector bundle""; ""6.3. A holomorphic atlas for the twistor space""; ""6.4. The twistor lines""; ""6.5. The real structure on the twistor space""; ""6.6. Symplectic geometry of the twistor space""; ""6.7. The lattice quotient""; ""6.8. Functions and flows""; ""7. The moduli space and the Riemann period matrix"" ""7.1. Coordinates for the Betti moduli space""""7.2. Abelian differentials and their periods""; ""7.3. Flat connections""; ""7.4. Higgs fields""; ""7.5. The C*-action in terms of the period matrix""; ""7.6. The C*-action and the real points""; ""Bibliography"" |
| Record Nr. | UNINA-9910817263803321 |
Goldman William Mark
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2008] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||