Aeroacoustics of Low Mach Number Flows : Fundamentals, Analysis and Measurement
| Aeroacoustics of Low Mach Number Flows : Fundamentals, Analysis and Measurement |
| Autore | Glegg Stewart |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | San Diego : , : Elsevier Science & Technology, , 2023 |
| Descrizione fisica | 1 online resource (724 pages) |
| Disciplina | 629.1323 |
| Altri autori (Persone) | DevenportWilliam |
| Soggetto topico |
Aeroacoustics
Fluid dynamics |
| ISBN |
9780443218583
0443218587 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Aeroacoustics of Low Mach Number Flows: Fundamentals, Analysis and Measurement -- Copyright -- Dedication -- Contents -- Preface to first edition -- Preface to second edition -- Part One: Fundamentals -- Chapter 1: Introduction -- 1.1. Aeroacoustics of low Mach number flows -- 1.2. Sound waves and turbulence -- 1.3. Quantifying sound levels and annoyance -- 1.4. Symbol and analysis conventions -- 1.5. Organization of the book -- 1.6. Problems -- References -- Chapter 2: The equations of fluid motion -- 2.1. Mathematical notation and foundations -- 2.2. The equation of continuity -- 2.3. The momentum equation -- 2.3.1. General considerations -- 2.3.2. Viscous stresses -- 2.4. Thermodynamic quantities -- 2.5. The role of vorticity -- 2.5.1. Croccos equation -- 2.5.2. The vorticity equation -- 2.6. Energy and acoustic intensity -- 2.6.1. The energy equation -- 2.6.2. Sound power -- 2.7. Some relevant fluid dynamic concepts and methods -- 2.7.1. Streamlines and vorticity -- 2.7.2. Ideal flow -- 2.7.3. Conformal mapping -- 2.7.4. Vortex filaments and the Biot Savart law -- 2.8. Summary of key results -- 2.9. Problems -- References -- Chapter 3: Linear acoustics -- 3.1. The acoustic wave equation -- 3.2. Plane waves and spherical waves -- 3.3. Harmonic time dependence -- 3.4. Sound generation by small bodies in motion -- 3.4.1. Pulsating sphere -- 3.4.2. Translating sphere -- 3.4.3. General spherical surface motions -- 3.5. Sound scattering by a small sphere -- 3.6. Superposition and far field approximations -- 3.7. Monopole, dipole and quadrupole sources -- 3.8. Acoustic intensity and sound power output -- 3.9. Solution to the wave equation using Greens functions -- 3.9.1. Spherical surfaces -- 3.10. Frequency domain solutions and Fourier transforms -- 3.11. Summary of key results -- 3.12. Problems -- References.
Part Two: Foundations of aeroacoustics -- Chapter 4: Lighthills acoustic analogy -- 4.1. Lighthills analogy -- 4.2. Limitations of the acoustic analogy -- 4.2.1. Nearly incompressible flow -- 4.2.2. Uniform flow -- 4.3. Curles theorem -- 4.4. Monopole, dipole and quadrupole sources -- 4.5. Tailored Greens functions -- 4.6. Surfaces and sources -- 4.6.1. Boundary layers -- 4.6.2. The surface source for bodies immersed in a flow -- 4.7. Wavenumber and Fourier transforms -- 4.8. Summary of key results -- 4.9. Problems -- References -- Chapter 5: The Ffowcs Williams and Hawkings equation -- 5.1. Generalized derivatives -- 5.2. The Ffowcs Williams and Hawkings equation -- 5.2.1. General theory -- 5.2.2. Impenetrable surfaces -- 5.3. Moving sources -- 5.4. Sources in a free stream -- 5.5. The Prantl-Glauert transformation -- 5.6. Ffowcs Williams and Hawkings surfaces -- 5.7. Incompressible flow estimates of acoustic source terms -- 5.8. Summary of key results -- 5.9. Problems -- References -- Chapter 6: Propeller and open rotor noise -- 6.1. Tone and broadband noise -- 6.2. Time domain prediction methods for tone noise from a single rotor blade -- 6.2.1. Loading noise -- 6.2.2. Thickness noise -- 6.2.3. Supersonic tip speeds -- 6.3. Frequency domain prediction methods for tone noise -- 6.3.1. Harmonic analysis of loading and thickness noise -- 6.3.2. Rotor Stator interactions -- 6.4. Amiets approximation for small scale disturbances -- 6.5. Blade vortex interactions -- 6.6. Summary of key results -- 6.6.1. Loading noise in the time domain -- 6.6.2. Thickness noise in the time domain -- 6.6.3. Frequency domain methods for tone noise -- 6.6.4. Amiets approximation -- 6.7. Problems -- References -- Part Three: Unsteady blade loading -- Chapter 7: Amiets approach-The surface source for thin airfoils -- 7.1. Amiets approach. 7.2. The incompressible flow blade response function -- 7.3. The compressible flow blade response function -- 7.3.1. The compressible and incompressible flow blade response to a step gust -- 7.3.2. Leading and trailing edge solutions -- 7.3.3. The first-order solution for the surface pressure -- 7.3.4. The unsteady lift in compressible flow -- 7.3.5. An arbitrary gust -- 7.4. The acoustic far field -- 7.4.1. The acoustic far field from the leading edge interaction -- 7.4.2. The far field directionality and scaling -- 7.4.3. Impulsive gusts of finite span -- 7.4.4. A step gust -- 7.5. Blade vortex interactions in compressible flow -- 7.5.1. The upwash velocity spectrum from a blade vortex interaction -- 7.6. Summary of key results -- 7.7. Problems -- References -- Chapter 8: Goldsteins approach-Flows with distortion -- 8.1. Goldsteins equation -- 8.2. Drift coordinates -- 8.3. Rapid distortion theory -- 8.4. The rapid distortion of vorticity -- 8.5. Summary of key results -- 8.6. Problems -- References -- Chapter 9: Howes and Powells approach-Vortex sound -- 9.1. Theory of vortex sound -- 9.2. Sound from two line vortices in free space -- 9.3. Surface forces in incompressible flow -- 9.4. Aeolian tones -- 9.5. Blade vortex interactions in incompressible flow -- 9.5.1. Unsteady blade loading caused by a BVI -- 9.5.2. The far-field sound -- 9.5.3. Response to a step gust -- 9.6. The effect of angle of attack and blade thickness on unsteady loads -- 9.6.1. The effect of angle of attack -- 9.6.2. The effect of airfoil thickness -- 9.7. RDT and airfoil loading noise -- 9.8. Summary of key results -- 9.9. Problems -- References -- Part Four: Turbulent flows -- Chapter 10: Stochastic processes -- 10.1. Averaging and the expected value -- 10.2. Time correlations and frequency spectra of a single variable. 10.3. Time correlations and frequency spectra of two variables -- 10.4. Spatial correlation and the wavenumber spectrum -- 10.5. Summary of key results -- 10.6. Problems -- Reference -- Chapter 11: Turbulence and turbulent flows -- 11.1. The nature of turbulence -- 11.2. Averaging of the governing equations and computational approaches -- 11.3. Homogeneous isotropic turbulence -- 11.3.1. Mathematical description -- 11.3.2. The von Kármán spectrum -- 11.3.3. The Liepmann spectrum -- 11.3.4. The Kerschen Gliebe anisotropic model -- 11.4. The fully developed plane wake -- 11.5. The zero pressure gradient turbulent boundary layer -- 11.6. Rapid distortion theory and turbulence -- 11.7. Surface blocking -- 11.8. Summary of key results -- 11.9. Problems -- References -- Chapter 12: Wall pressure fluctuations in turbulent boundary layers -- 12.1. The frequency spectrum -- 12.2. The wavenumber frequency spectrum -- 12.3. The Poisson equation for wall pressure -- 12.4. Kraichnans integration -- 12.5. Modeling of the mean-shear-turbulence term -- 12.6. Summary of key results -- 12.7. Problems -- References -- Part Five: Broadband flow noise from surface interactions and fans -- Chapter 13: Broadband noise from open rotors and leading edge noise -- 13.1. Broadband noise from open rotors in general -- 13.1.1. Introduction -- 13.1.2. The frequency domain approach -- 13.1.3. Amiets method -- 13.1.4. Time domain approaches -- 13.2. An airfoil in a turbulent stream -- 13.3. Blade to blade correlation and haystacking -- 13.4. Summary of key results -- 13.5. Problems -- References -- Further reading -- Chapter 14: Trailing edge noise and roughness noise -- 14.1. The origin and scaling of trailing edge noise -- 14.2. Amiets trailing edge noise theory -- 14.3. The method of Brooks, Pope and Marcolini [8] -- 14.4. Roughness noise -- 14.5. Summary of key results. 14.6. Problems -- References -- Chapter 15: Duct acoustics -- 15.1. Introduction -- 15.2. The sound in a cylindrical duct -- 15.2.1. General formulation -- 15.2.2. Hard-walled ducts -- 15.2.3. Modal propagation -- 15.3. Duct liners -- 15.4. The Greens function for a source in a cylindrical duct -- 15.5. Sound power in ducts -- 15.6. Non-uniform mean flow -- 15.7. The radiation from duct inlets and exits -- 15.8. Summary of key results -- 15.9. Problems -- References -- Chapter 16: Fan noise -- 16.1. Sources of sound in ducted fans -- 16.2. Duct mode amplitudes -- 16.2.1. Thickness noise for a ducted fan -- 16.2.2. Blade loading noise -- 16.2.3. Fan tone noise -- 16.2.4. In duct sound power -- 16.3. The cascade blade response function -- 16.3.1. The rectilinear cascade model -- 16.3.2. The acoustic duct modes -- 16.3.3. The acoustic modes from an arbitrary gust -- 16.3.4. The sound power spectrum -- 16.4. The rectilinear model of a rotor or stator in a cylindrical duct -- 16.4.1. Mode matching -- 16.4.2. An axial dipole example -- 16.5. Wake evolution in swirling flows -- 16.6. Fan tone noise -- 16.6.1. The upwash coefficients -- 16.6.2. Unskewed self-similar wakes -- 16.7. Broadband fan noise -- 16.8. Summary of key results -- 16.8.1. Ducted fan noise -- 16.8.2. The sound generated by a cascade of blades -- 16.9. Problems -- References -- Part Six: Experimental methods -- Chapter 17: Aeroacoustic testing and instrumentation -- 17.1. Aeroacoustic wind tunnels -- 17.2. Wind tunnel acoustic corrections -- 17.2.1. Shear layer refraction -- 17.2.2. Corrections for a two-dimensional planar jet -- 17.2.3. Effects of shear layer thickness and curvature -- 17.2.4. Considerations for hybrid anechoic tunnels -- 17.3. Sound measurement -- 17.4. The measurement of turbulent pressure fluctuations -- 17.5. Velocity measurement -- 17.6. Summary of key results. 17.7. Problems. |
| Record Nr. | UNINA-9911034971903321 |
Glegg Stewart
|
||
| San Diego : , : Elsevier Science & Technology, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Aeroacoustics of low mach number flows : fundamentals, analysis and measurement / / Stewart Glegg, William Devenport
| Aeroacoustics of low mach number flows : fundamentals, analysis and measurement / / Stewart Glegg, William Devenport |
| Autore | Glegg Stewart |
| Edizione | [First edition.] |
| Pubbl/distr/stampa | London, England : , : Academic Press, , 2017 |
| Descrizione fisica | 1 online resource (554 pages) : color illustrations, tables |
| Disciplina | 629.132300724 |
| Soggetto topico | Aerodynamics - Mathematical models |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910297382203321 |
Glegg Stewart
|
||
| London, England : , : Academic Press, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Noise generation by fans with supersonic tip speeds [[electronic resource] /] / Stewart Glegg
| Noise generation by fans with supersonic tip speeds [[electronic resource] /] / Stewart Glegg |
| Autore | Glegg Stewart |
| Pubbl/distr/stampa | Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , [2003] |
| Descrizione fisica | 1 online resource (7 pages) : color illustrations |
| Collana | NASA/CR |
| Soggetto topico |
Noise generators
Turbofans Sound waves Stator blades Acoustic propagation Aerodynamic noise |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910701385703321 |
Glegg Stewart
|
||
| Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , [2003] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||