top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Foundation Models for Natural Language Processing [[electronic resource] ] : Pre-trained Language Models Integrating Media / / by Gerhard Paass, Sven Giesselbach
Foundation Models for Natural Language Processing [[electronic resource] ] : Pre-trained Language Models Integrating Media / / by Gerhard Paass, Sven Giesselbach
Autore Paass Gerhard
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (xviii, 448 pages)
Disciplina 006.35
Collana Artificial Intelligence: Foundations, Theory, and Algorithms
Soggetto topico Natural language processing (Computer science)
Computational linguistics
Artificial intelligence
Expert systems (Computer science)
Machine learning
Natural Language Processing (NLP)
Computational Linguistics
Artificial Intelligence
Knowledge Based Systems
Machine Learning
ISBN 9783-031-23190-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Pre-trained Language Models -- 3. Improving Pre-trained Language Models -- 4. Knowledge Acquired by Foundation Models -- 5. Foundation Models for Information Extraction -- 6. Foundation Models for Text Generation -- 7. Foundation Models for Speech, Images, Videos, and Control -- 8. Summary and Outlook.
Record Nr. UNINA-9910725929703321
Paass Gerhard  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Foundation Models for Natural Language Processing [[electronic resource] ] : Pre-trained Language Models Integrating Media / / by Gerhard Paass, Sven Giesselbach
Foundation Models for Natural Language Processing [[electronic resource] ] : Pre-trained Language Models Integrating Media / / by Gerhard Paass, Sven Giesselbach
Autore Paass Gerhard
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (xviii, 448 pages)
Disciplina 006.35
Collana Artificial Intelligence: Foundations, Theory, and Algorithms
Soggetto topico Natural language processing (Computer science)
Computational linguistics
Artificial intelligence
Expert systems (Computer science)
Machine learning
Natural Language Processing (NLP)
Computational Linguistics
Artificial Intelligence
Knowledge Based Systems
Machine Learning
ISBN 9783-031-23190-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Pre-trained Language Models -- 3. Improving Pre-trained Language Models -- 4. Knowledge Acquired by Foundation Models -- 5. Foundation Models for Information Extraction -- 6. Foundation Models for Text Generation -- 7. Foundation Models for Speech, Images, Videos, and Control -- 8. Summary and Outlook.
Record Nr. UNISA-996547972703316
Paass Gerhard  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Foundation Models for Natural Language Processing : Pre-trained Language Models Integrating Media / / Gerhard Paaß , Sven Giesselbach
Foundation Models for Natural Language Processing : Pre-trained Language Models Integrating Media / / Gerhard Paaß , Sven Giesselbach
Autore Paass Gerhard
Pubbl/distr/stampa Springer International Publishing, 2023
Altri autori (Persone) GiesselbachSven
ISBN 3-031-23190-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996591072603316
Paass Gerhard  
Springer International Publishing, 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Foundation Models for Natural Language Processing : Pre-trained Language Models Integrating Media / / by Gerhard Paaß, Sven Giesselbach
Foundation Models for Natural Language Processing : Pre-trained Language Models Integrating Media / / by Gerhard Paaß, Sven Giesselbach
Autore Paaß Gerhard
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource
Disciplina 006.35
Altri autori (Persone) GiesselbachSven
Collana Artificial Intelligence: Foundations, Theory, and Algorithms
Soggetto topico Natural language processing (Computer science)
Computational linguistics
Artificial intelligence
Expert systems (Computer science)
Machine learning
Natural Language Processing (NLP)
Computational Linguistics
Artificial Intelligence
Knowledge Based Systems
Machine Learning
ISBN 9783031231902
3031231902
Classificazione COM004000COM025000COM073000LAN009000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Pre-trained Language Models -- 3. Improving Pre-trained Language Models -- 4. Knowledge Acquired by Foundation Models -- 5. Foundation Models for Information Extraction -- 6. Foundation Models for Text Generation -- 7. Foundation Models for Speech, Images, Videos, and Control -- 8. Summary and Outlook.
Record Nr. UNINA-9910847154703321
Paaß Gerhard  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22–25, 2024, Revised Selected Papers, Part III / / edited by Giuseppe Nicosia, Varun Ojha, Sven Giesselbach, M. Panos Pardalos, Renato Umeton
Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22–25, 2024, Revised Selected Papers, Part III / / edited by Giuseppe Nicosia, Varun Ojha, Sven Giesselbach, M. Panos Pardalos, Renato Umeton
Autore Nicosia Giuseppe
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (425 pages)
Disciplina 006.3
Altri autori (Persone) OjhaVarun
GiesselbachSven
PardalosM. Panos
UmetonRenato
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
Artificial Intelligence
ISBN 9783031824876
9783031824869
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Combining EEG oscillation analysis and explainable artificial intelligence for characterizing visuospatial attention. -- Fully automatic meningioma segmentation with nnUNet using T1-weighted contrast-enhanced MR images by leveraging publicly available data and different types of annotations. -- Multimodal Shannon Game with Images. -- On the Role of Activation Functions in EEG-To-Text Decoder. -- INVISIONS: Innovative Neuromorphic Vision Sensors in real-scenarios. -- Path-weight-based Pruning and SHAP-based Explanations of an ANN with fMRI Data. -- Deep learning in a bilateral brain with hemispheric specialisation. -- A compact convolutional neural network for decoding EEG functional connectivity: application to motor imagery. -- Inference of Abstraction for Human-like Probabilistic Reasoning. -- Conformal Prediction for Uncertainty Quantification in Brain Age Estimation using Random Forests Quantile Regression on MRI Features of the HCP Young Adult. -- Emotional Reactions To AI-generated Images: A Pilot Study Using Neuro physiological Measures. -- Exploring Deep Learning Models for EEG Neural Decoding. -- Transfer Learning for the Cognitive Staging Prediction in Alzheimer’s Disease. -- Inference of Abstraction for Human-like Logical Reasoning. -- Sequence Learning with Analog Neuromorphic Multi-Compartment Neurons and On-Chip Structural STDP. -- Understanding Sleep Dynamics Gathered from Wearable Devices with Ex plainable Recurrent Neural Networks. -- Brain morphometry differences across sexes revealed through Explainable Artificial Intelligence: a Human Connectome Project Young Adult study. -- Left/Right brain, human motor control and the implications for robotics. -- Predicting Psychological Well-being in HCP Young Adult Cohort using Ran dom Forests Regression and SHAP with NIHTB Emotion Battery.
Record Nr. UNINA-9910984691403321
Nicosia Giuseppe  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22–25, 2024, Revised Selected Papers, Part I / / edited by Giuseppe Nicosia, Varun Ojha, Sven Giesselbach, M. Panos Pardalos, Renato Umeton
Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22–25, 2024, Revised Selected Papers, Part I / / edited by Giuseppe Nicosia, Varun Ojha, Sven Giesselbach, M. Panos Pardalos, Renato Umeton
Autore Nicosia Giuseppe
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (826 pages)
Disciplina 006.3
Altri autori (Persone) OjhaVarun
GiesselbachSven
PardalosM. Panos
UmetonRenato
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
Artificial Intelligence
ISBN 9783031824814
9783031824807
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Solving Two-Stage Stochastic Programming problems via Machine Learning. -- Weight-varying Model Predictive Control for Coupled Cyber-Physical Systems: Aerial Grasping Study. -- Assessing the Impact of Government Policies on Covid-19 Spread: A Machine Learning Approach. -- Optimal Design and Implementation of an Open-source Emulation Platform for User-Centric Shared E-mobility Services. -- Protein Sequence Generation using Denoising Probabilistic Diffusion Model. -- Individual Fairness in Generative Text Models. -- Refined Direct Preference Optimization with Synthetic Data for Behavioral Alignment of LLMs. -- Artificial Intelligence and Cyber Security. -- Exploring Digital Health Trends in the Headlines via Knowledge Graph Analysis. -- Robust Infidelity: When Faithfulness Measures on Masked Language Models Are Misleading. -- Optimal risk scores for continuous predictors. -- Post-Treatment Gait Prediction after Botulinum Toxin Injections Using Deep Learning with an Attention Mechanism. -- Leveraging Graph Networks and Generative Adversarial Networks for Controllable Trajectory Prediction. -- Nearest Neighbors Counterfactuals. -- An Attention-based Representation Distillation Baseline for Multi-Label Continual Learning. -- Pattern detection in abnormal district heating data. -- Harnessing Graph Neural Networks for Pattern Classification in Heterogeneous Event Graphs. -- Learn to Create Neighborhoods in Real-World Vehicle Routing Problem. -- PointerKex: A Pointer-based SSH Key Extraction method. -- Addressing The Permutation Flowshop Scheduling with Grey Wolf Optimizer. -- MCGRAN: Multi-Conditional Graph Generation for Neural Architecture Search. -- Generative reward machine for Reinforcement learning for Physical Internet Distribution Centre. -- Between accurate prediction and poor decision making: the AI/ML gap. -- Cross-Metapath based Hashing for Recommendation Systems. -- Beyond Iterative Tuning: Zero-Shot Hyperparameter Optimisation for Decision Trees. -- Augmented Human-AI Forecasting for Ship Refit Project Scheduling: A Predict-then-Optimize Approach. -- Evaluation of Document Deduplication Algorithms for Large Text Corpora. -- Hicks Traverse meets One-Factor SVM: Belief Incoherence Attractors. -- Synthetic Time Series for Anomaly Detection in Cloud Microservices. -- Radiotherapy Treatment Planning: An Integrated Optimization and Reinforcement Learning Approach. -- Leap: Inductive Link Prediction via Learnable Topology Augmentation. -- Estimating Completeness of Consensus Models: Geometrical and Distributional Approaches. -- Active Inference Meeting Energy-Efficient Control of Parallel and Identical Machines. -- Clarifying the Fog: Evaluating and Enhancing User Comprehension of Android Data Safety Documents.
Record Nr. UNINA-9910984687903321
Nicosia Giuseppe  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22–25, 2024, Revised Selected Papers, Part II / / edited by Giuseppe Nicosia, Varun Ojha, Sven Giesselbach, M. Panos Pardalos, Renato Umeton
Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22–25, 2024, Revised Selected Papers, Part II / / edited by Giuseppe Nicosia, Varun Ojha, Sven Giesselbach, M. Panos Pardalos, Renato Umeton
Autore Nicosia Giuseppe
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (606 pages)
Disciplina 006.3
Altri autori (Persone) OjhaVarun
GiesselbachSven
PardalosM. Panos
UmetonRenato
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
Artificial Intelligence
ISBN 9783031824845
9783031824838
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Exploring Explainable Machine Learning for Enhanced Ship Performance Monitoring. -- Identifying Potential Key Point of Sale Customers Using Network Centrality. -- Hyperparameter Optimization for Driving Strategies Based on Reinforcement Learning. -- Predicting Multiple Sclerosis Worsening Using Stratification Based and Time Dependent Variables Extracted from Routine Visits Data. -- Predicting University Dropout Rates Using Machine Learning: UniCt case. -- Investigating on Gradient Regularization for Testing Neural Networks. -- SKIE SRL: Structured Key Information Extraction from Business Documents using Statistical Relational Learning. -- Leveraging LLM powered Systems to Accelerate Mycobacterium tuberculosis Research Step One: From Documents to the Vectorstore. -- Vegvisir: Probabilistic model (VAE) for viral T cell epitope prediction. -- Tiny Long Short Term Memory Model for Resource Constrained Prediction of Battery Cycle Life. -- Compact Artificial Neural Network Models for Predicting Protein Residue RNA Base Binding. -- FWin transformer for dengue prediction under climate and ocean influence. -- ENGinnSAND: A Reference Dataset for Monocular Depth Prediction of Line Structures. -- Topological Layering of Mouse Brain Activity in Light Sheet Microscopy Datasets. -- A Constraint Based Savings Algorithm for the Traveling Salesman Problem. -- Gaussian process interpolation with conformal prediction: methods and comparative analysis. -- Using embeddings of pre trained models for cross database dysarthria detection: supervised vs. self supervised approach. -- Personality Profiling for Literary Character Dialogue Agents with Human Level Attributes. -- Integrating Logit Space Embeddings for Reliable Out of Distribution Detection. -- A Computational Framework for Identifying Salient Moments in Motion Capture Data. -- Machine Learning for the Evaluation of the Nephrops Norvegicus Population. -- Enhancing Cluster Based Topic Models through Parametric Dimensionality Reduction with Transformer Encoders. -- Enhancing Arrhythmia Detection Using an Ensemble of Transformer Models for Heartbeat Classification. -- Rapidly Computing Approximate Graph Convex Hulls via FastMap. -- Deep Gaussian mixture model for unsupervised image segmentation. -- Address Classification in E commerce Logistics Using Federated Learning.
Record Nr. UNINA-9910984575703321
Nicosia Giuseppe  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22–25, 2024, Revised Selected Papers, Part III / / edited by Giuseppe Nicosia, Varun Ojha, Sven Giesselbach, M. Panos Pardalos, Renato Umeton
Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22–25, 2024, Revised Selected Papers, Part III / / edited by Giuseppe Nicosia, Varun Ojha, Sven Giesselbach, M. Panos Pardalos, Renato Umeton
Autore Nicosia Giuseppe
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (425 pages)
Disciplina 006.3
Altri autori (Persone) OjhaVarun
GiesselbachSven
PardalosM. Panos
UmetonRenato
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
Artificial Intelligence
ISBN 9783031824876
9783031824869
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Combining EEG oscillation analysis and explainable artificial intelligence for characterizing visuospatial attention. -- Fully automatic meningioma segmentation with nnUNet using T1-weighted contrast-enhanced MR images by leveraging publicly available data and different types of annotations. -- Multimodal Shannon Game with Images. -- On the Role of Activation Functions in EEG-To-Text Decoder. -- INVISIONS: Innovative Neuromorphic Vision Sensors in real-scenarios. -- Path-weight-based Pruning and SHAP-based Explanations of an ANN with fMRI Data. -- Deep learning in a bilateral brain with hemispheric specialisation. -- A compact convolutional neural network for decoding EEG functional connectivity: application to motor imagery. -- Inference of Abstraction for Human-like Probabilistic Reasoning. -- Conformal Prediction for Uncertainty Quantification in Brain Age Estimation using Random Forests Quantile Regression on MRI Features of the HCP Young Adult. -- Emotional Reactions To AI-generated Images: A Pilot Study Using Neuro physiological Measures. -- Exploring Deep Learning Models for EEG Neural Decoding. -- Transfer Learning for the Cognitive Staging Prediction in Alzheimer’s Disease. -- Inference of Abstraction for Human-like Logical Reasoning. -- Sequence Learning with Analog Neuromorphic Multi-Compartment Neurons and On-Chip Structural STDP. -- Understanding Sleep Dynamics Gathered from Wearable Devices with Ex plainable Recurrent Neural Networks. -- Brain morphometry differences across sexes revealed through Explainable Artificial Intelligence: a Human Connectome Project Young Adult study. -- Left/Right brain, human motor control and the implications for robotics. -- Predicting Psychological Well-being in HCP Young Adult Cohort using Ran dom Forests Regression and SHAP with NIHTB Emotion Battery.
Record Nr. UNISA-996647969903316
Nicosia Giuseppe  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22–25, 2024, Revised Selected Papers, Part II / / edited by Giuseppe Nicosia, Varun Ojha, Sven Giesselbach, M. Panos Pardalos, Renato Umeton
Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22–25, 2024, Revised Selected Papers, Part II / / edited by Giuseppe Nicosia, Varun Ojha, Sven Giesselbach, M. Panos Pardalos, Renato Umeton
Autore Nicosia Giuseppe
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (606 pages)
Disciplina 006.3
Altri autori (Persone) OjhaVarun
GiesselbachSven
PardalosM. Panos
UmetonRenato
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
Artificial Intelligence
ISBN 9783031824845
9783031824838
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Exploring Explainable Machine Learning for Enhanced Ship Performance Monitoring. -- Identifying Potential Key Point of Sale Customers Using Network Centrality. -- Hyperparameter Optimization for Driving Strategies Based on Reinforcement Learning. -- Predicting Multiple Sclerosis Worsening Using Stratification Based and Time Dependent Variables Extracted from Routine Visits Data. -- Predicting University Dropout Rates Using Machine Learning: UniCt case. -- Investigating on Gradient Regularization for Testing Neural Networks. -- SKIE SRL: Structured Key Information Extraction from Business Documents using Statistical Relational Learning. -- Leveraging LLM powered Systems to Accelerate Mycobacterium tuberculosis Research Step One: From Documents to the Vectorstore. -- Vegvisir: Probabilistic model (VAE) for viral T cell epitope prediction. -- Tiny Long Short Term Memory Model for Resource Constrained Prediction of Battery Cycle Life. -- Compact Artificial Neural Network Models for Predicting Protein Residue RNA Base Binding. -- FWin transformer for dengue prediction under climate and ocean influence. -- ENGinnSAND: A Reference Dataset for Monocular Depth Prediction of Line Structures. -- Topological Layering of Mouse Brain Activity in Light Sheet Microscopy Datasets. -- A Constraint Based Savings Algorithm for the Traveling Salesman Problem. -- Gaussian process interpolation with conformal prediction: methods and comparative analysis. -- Using embeddings of pre trained models for cross database dysarthria detection: supervised vs. self supervised approach. -- Personality Profiling for Literary Character Dialogue Agents with Human Level Attributes. -- Integrating Logit Space Embeddings for Reliable Out of Distribution Detection. -- A Computational Framework for Identifying Salient Moments in Motion Capture Data. -- Machine Learning for the Evaluation of the Nephrops Norvegicus Population. -- Enhancing Cluster Based Topic Models through Parametric Dimensionality Reduction with Transformer Encoders. -- Enhancing Arrhythmia Detection Using an Ensemble of Transformer Models for Heartbeat Classification. -- Rapidly Computing Approximate Graph Convex Hulls via FastMap. -- Deep Gaussian mixture model for unsupervised image segmentation. -- Address Classification in E commerce Logistics Using Federated Learning.
Record Nr. UNISA-996647969703316
Nicosia Giuseppe  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22–25, 2024, Revised Selected Papers, Part I / / edited by Giuseppe Nicosia, Varun Ojha, Sven Giesselbach, M. Panos Pardalos, Renato Umeton
Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22–25, 2024, Revised Selected Papers, Part I / / edited by Giuseppe Nicosia, Varun Ojha, Sven Giesselbach, M. Panos Pardalos, Renato Umeton
Autore Nicosia Giuseppe
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (826 pages)
Disciplina 006.3
Altri autori (Persone) OjhaVarun
GiesselbachSven
PardalosM. Panos
UmetonRenato
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
Artificial Intelligence
ISBN 9783031824814
9783031824807
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Solving Two-Stage Stochastic Programming problems via Machine Learning. -- Weight-varying Model Predictive Control for Coupled Cyber-Physical Systems: Aerial Grasping Study. -- Assessing the Impact of Government Policies on Covid-19 Spread: A Machine Learning Approach. -- Optimal Design and Implementation of an Open-source Emulation Platform for User-Centric Shared E-mobility Services. -- Protein Sequence Generation using Denoising Probabilistic Diffusion Model. -- Individual Fairness in Generative Text Models. -- Refined Direct Preference Optimization with Synthetic Data for Behavioral Alignment of LLMs. -- Artificial Intelligence and Cyber Security. -- Exploring Digital Health Trends in the Headlines via Knowledge Graph Analysis. -- Robust Infidelity: When Faithfulness Measures on Masked Language Models Are Misleading. -- Optimal risk scores for continuous predictors. -- Post-Treatment Gait Prediction after Botulinum Toxin Injections Using Deep Learning with an Attention Mechanism. -- Leveraging Graph Networks and Generative Adversarial Networks for Controllable Trajectory Prediction. -- Nearest Neighbors Counterfactuals. -- An Attention-based Representation Distillation Baseline for Multi-Label Continual Learning. -- Pattern detection in abnormal district heating data. -- Harnessing Graph Neural Networks for Pattern Classification in Heterogeneous Event Graphs. -- Learn to Create Neighborhoods in Real-World Vehicle Routing Problem. -- PointerKex: A Pointer-based SSH Key Extraction method. -- Addressing The Permutation Flowshop Scheduling with Grey Wolf Optimizer. -- MCGRAN: Multi-Conditional Graph Generation for Neural Architecture Search. -- Generative reward machine for Reinforcement learning for Physical Internet Distribution Centre. -- Between accurate prediction and poor decision making: the AI/ML gap. -- Cross-Metapath based Hashing for Recommendation Systems. -- Beyond Iterative Tuning: Zero-Shot Hyperparameter Optimisation for Decision Trees. -- Augmented Human-AI Forecasting for Ship Refit Project Scheduling: A Predict-then-Optimize Approach. -- Evaluation of Document Deduplication Algorithms for Large Text Corpora. -- Hicks Traverse meets One-Factor SVM: Belief Incoherence Attractors. -- Synthetic Time Series for Anomaly Detection in Cloud Microservices. -- Radiotherapy Treatment Planning: An Integrated Optimization and Reinforcement Learning Approach. -- Leap: Inductive Link Prediction via Learnable Topology Augmentation. -- Estimating Completeness of Consensus Models: Geometrical and Distributional Approaches. -- Active Inference Meeting Energy-Efficient Control of Parallel and Identical Machines. -- Clarifying the Fog: Evaluating and Enhancing User Comprehension of Android Data Safety Documents.
Record Nr. UNISA-996647970103316
Nicosia Giuseppe  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui