top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fuzzy Cognitive Maps : Best Practices and Modern Methods
Fuzzy Cognitive Maps : Best Practices and Modern Methods
Autore Giabbanelli Philippe J
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2024
Descrizione fisica 1 online resource (228 pages)
Altri autori (Persone) NápolesGonzalo
ISBN 3-031-48963-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Contents -- Contributors -- Acronyms -- 1 Defining and Using Fuzzy Cognitive Mapping -- 1.1 Introduction -- 1.2 Three Equivalent Definitions -- 1.2.1 FCMs as Mental Models -- 1.2.2 FCMs as Mathematical Objects -- 1.2.3 FCMs as Simulation Tools -- 1.3 A Typology of Uses -- 1.3.1 FCMs as Expert Systems -- 1.3.2 FCMs in Collective Intelligence -- 1.3.3 FCMs as Boundary Objects to Support Learning -- 1.3.4 FCMs as Prediction Models -- References -- 2 Creating an FCM with Participants in an Interview or Workshop Setting -- 2.1 Decision Factors -- 2.1.1 Individual Versus Group Modeling -- 2.1.2 Facilitator Versus Participant Mapping -- 2.1.3 Hand-Drawn Models Versus Modeling Software -- 2.1.4 Pre-defined, Open-Ended Concepts or Hybrid Approach -- 2.2 Data Collection -- 2.2.1 Creating a Parsimonious Model and Weighting Connections -- 2.2.2 Participant Recruitment -- 2.2.3 Facilitation Considerations -- 2.3 Conclusions -- References -- 3 Principles of Simulations with FCMs -- 3.1 Introduction: Revisiting the Reasoning Mechanism -- 3.2 Activation Functions -- 3.3 Convergence: A Mathematical Perspective -- 3.4 Convergence: A Simulation Approach -- 3.5 A Detailed Example in Python -- 3.6 Exercises -- References -- 4 Hybrid Simulations -- 4.1 Introduction -- 4.2 Rationale for a Hybrid ABM/FCM Simulation -- 4.3 Main Steps to Design a Hybrid ABM/FCM Simulation -- 4.4 Example of Study Design and Python Implementation -- 4.5 Scaling-Up Simulations Using Parallelism -- 4.6 Exercises -- References -- 5 Analysis of Fuzzy Cognitive Maps -- 5.1 Why Analyze Fuzzy Cognitive Maps? -- 5.2 What Are the Important Concepts? -- 5.2.1 Transmitter, Receiver, and Ordinary Concepts -- 5.2.2 Centrality Measures -- 5.3 Validating the Facilitation Process -- 5.3.1 Number of Concepts and Relationships -- 5.3.2 Receiver-Transmitter Ratio.
5.3.3 Metrics Based on Shortest Paths -- 5.3.4 Clustering Coefficient -- 5.3.5 Density -- 5.3.6 Feedback Loops -- 5.4 Conclusion -- 5.5 Exercises -- References -- 6 Extensions of Fuzzy Cognitive Maps -- 6.1 Why Do We Extend Fuzzy Cognitive Maps? -- 6.2 Interval-Valued Fuzzy Cognitive Maps -- 6.2.1 Example Interval-Valued Fuzzy Cognitive Map Inference -- 6.3 Time-Interval Fuzzy Cognitive Maps -- 6.3.1 Example Time-Interval Fuzzy Cognitive Map Inference -- 6.4 Extended-Fuzzy Cognitive Maps -- 6.4.1 Example Extended-Fuzzy Cognitive Map Inference -- 6.5 Trends and Future of Extensions of Fuzzy Cognitive Maps -- 6.6 Exercises -- References -- 7 Creating FCM Models from Quantitative Data with Evolutionary Algorithms -- 7.1 Introduction -- 7.2 Representing the Genome -- 7.2.1 Transformations Between Vector and Matrix -- 7.2.2 Constraints -- 7.3 Evaluation -- 7.4 Genetic Algorithms -- 7.5 Analysis -- 7.6 CMA-ES -- References -- 8 Advanced Learning Algorithm to Create FCM Models From Quantitative Data -- 8.1 Introduction -- 8.2 Hybrid Fuzzy Cognitive Map Model -- 8.3 Training the Hybrid FCM Model -- 8.4 Optimizing the Hybrid FCM Model -- 8.4.1 Detecting Superfluous Relationships -- 8.4.2 Calibrating the Sigmoid Offset -- 8.4.3 Calibrating the Weights -- 8.5 How to Use These Algorithms in Practice? -- 8.6 Applying the FCM Model to Real-World Data -- 8.6.1 Sensitivity to the Sigmoid Function Parameters -- 8.6.2 Comparison with Other Learning Approaches -- 8.7 Further Readings -- 8.8 Exercises -- References -- 9 Introduction to Fuzzy Cognitive Map-Based Classification -- 9.1 Introduction -- 9.2 Preliminaries -- 9.2.1 Notions of Classification and Features -- 9.2.2 Preliminary Processing -- 9.2.3 Performance Metrics -- 9.3 The FCM-Based Classification Model -- 9.3.1 Basic FCM Architecture for Data Classification -- 9.3.2 Genetic Algorithm-Based Optimization.
9.3.3 How Does the Model Classify New Instances? -- 9.4 Classification Toy Case Study -- 9.4.1 Data Description -- 9.4.2 Classifier Implementation -- 9.4.3 Classification-Overall Quality -- 9.5 Further Readings -- 9.6 Exercises -- References -- 10 Addressing Accuracy Issues of Fuzzy Cognitive Map-Based Classifiers -- 10.1 Introduction -- 10.2 Long-Term Cognitive Network-Based Classifier -- 10.2.1 Generalizing the Traditional FCM Formalism -- 10.2.2 Recurrence-Aware Decision Model -- 10.2.3 Learning Algorithm for LTCN-Based Classifiers -- 10.3 Model-Dependent Feature Importance Measure -- 10.4 How to Use the LTCN-Based Classifier in Practice? -- 10.5 Empirical Evaluation of the LTCN Classifier -- 10.5.1 Pattern Classification Datasets -- 10.5.2 Does the LTCN Classifier Outperform the FCM Classifier? -- 10.5.3 Hyperparameter Sensitivity Analysis -- 10.5.4 Comparison of LTCN with State-of-the-Art Classifiers -- 10.6 Illustrative Case Study: Phishing Dataset -- 10.7 Further Readings -- 10.8 Exercises -- References -- Index.
Record Nr. UNINA-9910806193303321
Giabbanelli Philippe J  
Cham : , : Springer International Publishing AG, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modelling and Simulation of Human-Environment Interactions
Modelling and Simulation of Human-Environment Interactions
Autore Giabbanelli Philippe J
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (164 p.)
Soggetto topico Technology: general issues
Soggetto non controllato goal frames
restoration decision-making rules
restoration decision-making processes
mixed qualitative and quantitative data collection and analysis
farmer stakeholders
Central Malawi
computer modeling
human simulation
social simulation
sustainability
development studies
assemblage theory
ontology
epistemology
ethics
agent-based modeling
housing markets
Urban Shrinkage
cities
Detroit
GIS
agent-based model
model development
IoT sensors
smart cities
real-time data
MARS
simulation correction
decision support systems
urban planning
multimodal travel
human responses
quantitative modeling
water resources planning
water availability
water shortage
drought
Congo Basin
Lake Chad
climate change
water
migrations
conflicts
gender
resilient development
modeling
hybrid modeling
hybrid simulation
usability
high school education
physics education
user experience
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557204003321
Giabbanelli Philippe J  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui