Structure-based design of drugs and other bioactive molecules : tools and strategies / / Arun K. Ghosh and Sandra Gemma
| Structure-based design of drugs and other bioactive molecules : tools and strategies / / Arun K. Ghosh and Sandra Gemma |
| Autore | Ghosh Arun K. |
| Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , 2014 |
| Descrizione fisica | 1 online resource (476 p.) |
| Disciplina | 615.190285 |
| Soggetto topico |
Drug development - Data processing
Bioactive compounds - Analysis Biopolymers |
| ISBN |
3-527-66523-4
3-527-66521-8 3-527-66524-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Structure-based Design of Drugs and Other Bioactive Molecules: Tools and Strategies; Contents; Preface; 1 From Traditional Medicine to Modern Drugs: Historical Perspective of Structure-Based Drug Design; 1.1 Introduction; 1.2 Drug Discovery During 1928-1980; 1.3 The Beginning of Structure-Based Drug Design; 1.4 Conclusions; References; Part One: Concepts, Tools, Ligands, and Scaffolds for Structure-Based Design of Inhibitors; 2 Design of Inhibitors of Aspartic Acid Proteases; 2.1 Introduction; 2.2 Design of Peptidomimetic Inhibitors of Aspartic Acid Proteases
2.3 Design of Statine-Based Inhibitors2.4 Design of Hydroxyethylene Isostere-Based Inhibitors; 2.5 Design of Inhibitors with Hydroxyethylamine Isosteres; 2.5.1 Synthesis of Optically Active α-Aminoalkyl Epoxide; 2.6 Design of (Hydroxyethyl)urea-Based Inhibitors; 2.7 (Hydroxyethyl)sulfonamide-Based Inhibitors; 2.8 Design of Heterocyclic/Nonpeptidomimetic Aspartic Acid Protease Inhibitors; 2.8.1 Hydroxycoumarin- and Hydroxypyrone-Based Inhibitors; 2.8.2 Design of Substituted Piperidine-Based Inhibitors; 2.8.3 Design of Diaminopyrimidine-Based Inhibitors 2.8.4 Design of Acyl Guanidine-Based Inhibitors2.8.5 Design of Aminopyridine-Based Inhibitors; 2.8.6 Design of Aminoimidazole- and Aminohydantoin-Based Inhibitors; 2.9 Conclusions; References; 3 Design of Serine Protease Inhibitors; 3.1 Introduction; 3.2 Catalytic Mechanism of Serine Protease; 3.3 Types of Serine Protease Inhibitors; 3.4 Halomethyl Ketone-Based Inhibitors; 3.5 Diphenyl Phosphonate-Based Inhibitors; 3.6 Trifluoromethyl Ketone Based Inhibitors; 3.6.1 Synthesis of Trifluoromethyl Ketones; 3.7 Peptidyl Boronic Acid-Based Inhibitors 3.7.1 Synthesis of α-Aminoalkyl Boronic Acid Derivatives3.8 Peptidyl α-Ketoamide- and α-Ketoheterocycle-Based Inhibitors; 3.8.1 Synthesis of α-Ketoamide and α-Ketoheterocyclic Templates; 3.9 Design of Serine Protease Inhibitors Based Upon Heterocycles; 3.9.1 Isocoumarin-Derived Irreversible Inhibitors; 3.9.2 β-Lactam-Derived Irreversible Inhibitors; 3.10 Reversible/Noncovalent Inhibitors; 3.11 Conclusions; References; 4 Design of Proteasome Inhibitors; 4.1 Introduction; 4.2 Catalytic Mechanism of 20S Proteasome; 4.3 Proteasome Inhibitors; 4.3.1 Development of Boronate Proteasome Inhibitors 4.3.2 Development of β-Lactone Natural Product-Based Proteasome Inhibitors4.3.3 Development of Epoxy Ketone-Derived Inhibitors; 4.3.4 Noncovalent Proteasome Inhibitors; 4.4 Synthesis of β-Lactone Scaffold; 4.5 Synthesis of Epoxy Ketone Scaffold; 4.6 Conclusions; References; 5 Design of Cysteine Protease Inhibitors; 5.1 Introduction; 5.2 Development of Cysteine Protease Inhibitors with Michael Acceptors; 5.3 Design of Noncovalent Cysteine Protease Inhibitors; 5.4 Conclusions; References; 6 Design of Metalloprotease Inhibitors; 6.1 Introduction; 6.2 Design of Matrix Metalloprotease Inhibitors 6.3 Design of Inhibitors of Tumor Necrosis Factor-α-Converting Enzymes |
| Record Nr. | UNINA-9910132190803321 |
Ghosh Arun K.
|
||
| Weinheim, Germany : , : Wiley-VCH, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Structure-based design of drugs and other bioactive molecules : tools and strategies / / Arun K. Ghosh and Sandra Gemma
| Structure-based design of drugs and other bioactive molecules : tools and strategies / / Arun K. Ghosh and Sandra Gemma |
| Autore | Ghosh Arun K. |
| Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , 2014 |
| Descrizione fisica | 1 online resource (476 p.) |
| Disciplina | 615.190285 |
| Soggetto topico |
Drug development - Data processing
Bioactive compounds - Analysis Biopolymers |
| ISBN |
3-527-66523-4
3-527-66521-8 3-527-66524-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Structure-based Design of Drugs and Other Bioactive Molecules: Tools and Strategies; Contents; Preface; 1 From Traditional Medicine to Modern Drugs: Historical Perspective of Structure-Based Drug Design; 1.1 Introduction; 1.2 Drug Discovery During 1928-1980; 1.3 The Beginning of Structure-Based Drug Design; 1.4 Conclusions; References; Part One: Concepts, Tools, Ligands, and Scaffolds for Structure-Based Design of Inhibitors; 2 Design of Inhibitors of Aspartic Acid Proteases; 2.1 Introduction; 2.2 Design of Peptidomimetic Inhibitors of Aspartic Acid Proteases
2.3 Design of Statine-Based Inhibitors2.4 Design of Hydroxyethylene Isostere-Based Inhibitors; 2.5 Design of Inhibitors with Hydroxyethylamine Isosteres; 2.5.1 Synthesis of Optically Active α-Aminoalkyl Epoxide; 2.6 Design of (Hydroxyethyl)urea-Based Inhibitors; 2.7 (Hydroxyethyl)sulfonamide-Based Inhibitors; 2.8 Design of Heterocyclic/Nonpeptidomimetic Aspartic Acid Protease Inhibitors; 2.8.1 Hydroxycoumarin- and Hydroxypyrone-Based Inhibitors; 2.8.2 Design of Substituted Piperidine-Based Inhibitors; 2.8.3 Design of Diaminopyrimidine-Based Inhibitors 2.8.4 Design of Acyl Guanidine-Based Inhibitors2.8.5 Design of Aminopyridine-Based Inhibitors; 2.8.6 Design of Aminoimidazole- and Aminohydantoin-Based Inhibitors; 2.9 Conclusions; References; 3 Design of Serine Protease Inhibitors; 3.1 Introduction; 3.2 Catalytic Mechanism of Serine Protease; 3.3 Types of Serine Protease Inhibitors; 3.4 Halomethyl Ketone-Based Inhibitors; 3.5 Diphenyl Phosphonate-Based Inhibitors; 3.6 Trifluoromethyl Ketone Based Inhibitors; 3.6.1 Synthesis of Trifluoromethyl Ketones; 3.7 Peptidyl Boronic Acid-Based Inhibitors 3.7.1 Synthesis of α-Aminoalkyl Boronic Acid Derivatives3.8 Peptidyl α-Ketoamide- and α-Ketoheterocycle-Based Inhibitors; 3.8.1 Synthesis of α-Ketoamide and α-Ketoheterocyclic Templates; 3.9 Design of Serine Protease Inhibitors Based Upon Heterocycles; 3.9.1 Isocoumarin-Derived Irreversible Inhibitors; 3.9.2 β-Lactam-Derived Irreversible Inhibitors; 3.10 Reversible/Noncovalent Inhibitors; 3.11 Conclusions; References; 4 Design of Proteasome Inhibitors; 4.1 Introduction; 4.2 Catalytic Mechanism of 20S Proteasome; 4.3 Proteasome Inhibitors; 4.3.1 Development of Boronate Proteasome Inhibitors 4.3.2 Development of β-Lactone Natural Product-Based Proteasome Inhibitors4.3.3 Development of Epoxy Ketone-Derived Inhibitors; 4.3.4 Noncovalent Proteasome Inhibitors; 4.4 Synthesis of β-Lactone Scaffold; 4.5 Synthesis of Epoxy Ketone Scaffold; 4.6 Conclusions; References; 5 Design of Cysteine Protease Inhibitors; 5.1 Introduction; 5.2 Development of Cysteine Protease Inhibitors with Michael Acceptors; 5.3 Design of Noncovalent Cysteine Protease Inhibitors; 5.4 Conclusions; References; 6 Design of Metalloprotease Inhibitors; 6.1 Introduction; 6.2 Design of Matrix Metalloprotease Inhibitors 6.3 Design of Inhibitors of Tumor Necrosis Factor-α-Converting Enzymes |
| Record Nr. | UNINA-9910817249603321 |
Ghosh Arun K.
|
||
| Weinheim, Germany : , : Wiley-VCH, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||