top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Deep Learning for Targeted Treatments : Transformation in Healthcare
Deep Learning for Targeted Treatments : Transformation in Healthcare
Autore Malviya Rishabha
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (458 pages)
Altri autori (Persone) GhineaGheorghita
DhanarajRajesh Kumar
BalusamyBalamurugan
SundramSonali
Soggetto genere / forma Electronic books.
ISBN 1-119-85798-8
1-119-85797-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgement -- 1 Deep Learning and Site-Specific Drug Delivery: The Future and Intelligent Decision Support for Pharmaceutical Manufacturing Science -- 1.1 Introduction -- 1.2 Drug Discovery, Screening and Repurposing -- 1.3 DL and Pharmaceutical Formulation Strategy -- 1.3.1 DL in Dose and Formulation Prediction -- 1.3.2 DL in Dissolution and Release Studies -- 1.3.3 DL in the Manufacturing Process -- 1.4 Deep Learning Models for Nanoparticle-Based Drug Delivery -- 1.4.1 Nanoparticles With High Drug Delivery Capacities Using Perturbation Theory -- 1.4.2 Artificial Intelligence and Drug Delivery Algorithms -- 1.4.3 Nanoinformatics -- 1.5 Model Prediction for Site-Specific Drug Delivery -- 1.5.1 Prediction of Mode and a Site-Specific Action -- 1.5.2 Precision Medicine -- 1.6 Future Scope and Challenges -- 1.7 Conclusion -- References -- 2 Role of Deep Learning, Blockchain and Internet of Things in Patient Care -- 2.1 Introduction -- 2.2 IoT and WBAN in Healthcare Systems -- 2.2.1 IoT in Healthcare -- 2.2.2 WBAN -- 2.2.2.1 Key Features of Medical Networks in the Wireless Body Area -- 2.2.2.2 Data Transmission & -- Storage Health -- 2.2.2.3 Privacy and Security Concerns in Big Data -- 2.3 Blockchain Technology in Healthcare -- 2.3.1 Importance of Blockchain -- 2.3.2 Role of Blockchain in Healthcare -- 2.3.3 Benefits of Blockchain in Healthcare Applications -- 2.3.4 Elements of Blockchain -- 2.3.5 Situation Awareness and Healthcare Decision Support with Combined Machine Learning and Semantic Modeling -- 2.3.6 Mobile Health and Remote Monitoring -- 2.3.7 Different Mobile Health Application with Description of Usage in Area of Application -- 2.3.8 Patient-Centered Blockchain Mode -- 2.3.9 Electronic Medical Record -- 2.3.9.1 The Most Significant Barriers to Adoption Are.
2.3.9.2 Concern Regarding Negative Unintended Consequences of Technology -- 2.4 Deep Learning in Healthcare -- 2.4.1 Deep Learning Models -- 2.4.1.1 Recurrent Neural Networks (RNN) -- 2.4.1.2 Convolutional Neural Networks (CNN) -- 2.4.1.3 Deep Belief Network (DBN) -- 2.4.1.4 Contrasts Between Models -- 2.4.1.5 Use of Deep Learning in Healthcare -- 2.5 Conclusion -- 2.6 Acknowledgments -- References -- 3 Deep Learning on Site-Specific Drug Delivery System -- 3.1 Introduction -- 3.2 Deep Learning -- 3.2.1 Types of Algorithms Used in Deep Learning -- 3.2.1.1 Convolutional Neural Networks (CNNs) -- 3.2.1.2 Long Short-Term Memory Networks (LSTMs) -- 3.2.1.3 Recurrent Neural Networks -- 3.2.1.4 Generative Adversarial Networks (GANs) -- 3.2.1.5 Radial Basis Function Networks -- 3.2.1.6 Multilayer Perceptron -- 3.2.1.7 Self-Organizing Maps -- 3.2.1.8 Deep Belief Networks -- 3.3 Machine Learning and Deep Learning Comparison -- 3.4 Applications of Deep Learning in Drug Delivery System -- 3.5 Conclusion -- References -- 4 Deep Learning Advancements in Target Delivery -- 4.1 Introduction: Deep Learning and Targeted Drug Delivery -- 4.2 Different Models/Approaches of Deep Learning and Targeting Drug -- 4.3 QSAR Model -- 4.3.1 Model of Deep Long-Term Short-Term Memory -- 4.3.2 RNN Model -- 4.3.3 CNN Model -- 4.4 Deep Learning Process Applications in Pharmaceutical -- 4.5 Techniques for Predicting Pharmacotherapy -- 4.6 Approach to Diagnosis -- 4.7 Application -- 4.7.1 Deep Learning in Drug Discovery -- 4.7.2 Medical Imaging and Deep Learning Process -- 4.7.3 Deep Learning in Diagnostic and Screening -- 4.7.4 Clinical Trials Using Deep Learning Models -- 4.7.5 Learning for Personalized Medicine -- 4.8 Conclusion -- Acknowledgment -- References -- 5 Deep Learning and Precision Medicine: Lessons to Learn for the Preeminent Treatment for Malignant Tumors.
5.1 Introduction -- 5.2 Role of DL in Gene Identification, Unique Genomic Analysis, and Precise Cancer Diagnosis -- 5.2.1 Gene Identification and Genome Data -- 5.2.2 Image Diagnosis -- 5.2.3 Radiomics, Radiogenomics, and Digital Biopsy -- 5.2.4 Medical Image Analysis in Mammography -- 5.2.5 Magnetic Resonance Imaging -- 5.2.6 CT Imaging -- 5.3 DL in Next-Generation Sequencing, Biomarkers, and Clinical Validation -- 5.3.1 Next-Generation Sequencing -- 5.3.2 Biomarkers and Clinical Validation -- 5.4 DL and Translational Oncology -- 5.4.1 Prediction -- 5.4.2 Segmentation -- 5.4.3 Knowledge Graphs and Cancer Drug Repurposing -- 5.4.4 Automated Treatment Planning -- 5.4.5 Clinical Benefits -- 5.5 DL in Clinical Trials-A Necessary Paradigm Shift -- 5.6 Challenges and Limitations -- 5.7 Conclusion -- References -- 6 Personalized Therapy Using Deep Learning Advances -- 6.1 Introduction -- 6.2 Deep Learning -- 6.2.1 Convolutional Neural Networks -- 6.2.2 Autoencoders -- 6.2.3 Deep Belief Network (DBN) -- 6.2.4 Deep Reinforcement Learning -- 6.2.5 Generative Adversarial Network -- 6.2.6 Long Short-Term Memory Networks -- References -- 7 Tele-Health Monitoring Using Artificial Intelligence Deep Learning Framework -- 7.1 Introduction -- 7.2 Artificial Intelligence -- 7.2.1 Types of Artificial Intelligence -- 7.2.1.1 Machine Intelligence -- 7.2.1.2 Types of Machine Intelligence -- 7.2.2 Applications of Artificial Intelligence -- 7.2.2.1 Role in Healthcare Diagnostics -- 7.2.2.2 AI in Telehealth -- 7.2.2.3 Role in Structural Health Monitoring -- 7.2.2.4 Role in Remote Medicare Management -- 7.2.2.5 Predictive Analysis Using Big Data -- 7.2.2.6 AI's Role in Virtual Monitoring of Patients -- 7.2.2.7 Functions of Devices -- 7.2.2.8 Clinical Outcomes Through Remote Patient Monitoring -- 7.2.2.9 Clinical Decision Support.
7.2.3 Utilization of Artificial Intelligence in Telemedicine -- 7.2.3.1 Artificial Intelligence-Assisted Telemedicine -- 7.2.3.2 Telehealth and New Care Models -- 7.2.3.3 Strategy of Telecare Domain -- 7.2.3.4 Role of AI-Assisted Telemedicine in Various Domains -- 7.3 AI-Enabled Telehealth: Social and Ethical Considerations -- 7.4 Conclusion -- References -- 8 Deep Learning Framework for Cancer Diagnosis and Treatment -- 8.1 Deep Learning: An Emerging Field for Cancer Management -- 8.2 Deep Learning Framework in Diagnosis and Treatment of Cancer -- 8.3 Applications of Deep Learning in Cancer Diagnosis -- 8.3.1 Medical Imaging Through Artificial Intelligence -- 8.3.2 Biomarkers Identification in the Diagnosis of Cancer Through Deep Learning -- 8.3.3 Digital Pathology Through Deep Learning -- 8.3.4 Application of Artificial Intelligence in Surgery -- 8.3.5 Histopathological Images Using Deep Learning -- 8.3.6 MRI and Ultrasound Images Through Deep Learning -- 8.4 Clinical Applications of Deep Learning in the Management of Cancer -- 8.5 Ethical Considerations in Deep Learning-Based Robotic Therapy -- 8.6 Conclusion -- Acknowledgments -- References -- 9 Applications of Deep Learning in Radiation Therapy -- 9.1 Introduction -- 9.2 History of Radiotherapy -- 9.3 Principal of Radiotherapy -- 9.4 Deep Learning -- 9.5 Radiation Therapy Techniques -- 9.5.1 External Beam Radiation Therapy -- 9.5.2 Three-Dimensional Conformal Radiation Therapy (3D-CRT) -- 9.5.3 Intensity Modulated Radiation Therapy (IMRT) -- 9.5.4 Image-Guided Radiation Therapy (IGRT) -- 9.5.5 Intraoperative Radiation Therapy (IORT) -- 9.5.6 Brachytherapy -- 9.5.7 Stereotactic Radiosurgery (SRS) -- 9.6 Different Role of Deep Learning with Corresponding Role of Medical Physicist -- 9.6.1 Deep Learning in Patient Assessment -- 9.6.1.1 Radiotherapy Results Prediction.
9.6.1.2 Respiratory Signal Prediction -- 9.6.2 Simulation Computed Tomography -- 9.6.3 Targets and Organs-at-Risk Segmentation -- 9.6.4 Treatment Planning -- 9.6.4.1 Beam Angle Optimization -- 9.6.4.2 Dose Prediction -- 9.6.5 Other Role of Deep Learning in Corresponds with Medical Physicists -- 9.7 Conclusion -- References -- 10 Application of Deep Learning in Radiation Therapy -- 10.1 Introduction -- 10.2 Radiotherapy -- 10.3 Principle of Deep Learning and Machine Learning -- 10.3.1 Deep Neural Networks (DNN) -- 10.3.2 Convolutional Neural Network -- 10.4 Role of AI and Deep Learning in Radiation Therapy -- 10.5 Platforms for Deep Learning and Tools for Radiotherapy -- 10.6 Radiation Therapy Implementation in Deep Learning -- 10.6.1 Deep Learning and Imaging Techniques -- 10.6.2 Image Segmentation -- 10.6.3 Lesion Segmentation -- 10.6.4 Computer-Aided Diagnosis -- 10.6.5 Computer-Aided Detection -- 10.6.6 Quality Assurance -- 10.6.7 Treatment Planning -- 10.6.8 Treatment Delivery -- 10.6.9 Response to Treatment -- 10.7 Prediction of Outcomes -- 10.7.1 Toxicity -- 10.7.2 Survival and the Ability to Respond -- 10.8 Deep Learning in Conjunction With Radiomoic -- 10.9 Planning for Treatment -- 10.9.1 Optimization of Beam Angle -- 10.9.2 Prediction of Dose -- 10.10 Deep Learning's Challenges and Future Potential -- 10.11 Conclusion -- References -- 11 Deep Learning Framework for Cancer -- 11.1 Introduction -- 11.2 Brief History of Deep Learning -- 11.3 Types of Deep Learning Methods -- 11.4 Applications of Deep Learning -- 11.4.1 Toxicity Detection for Different Chemical Structures -- 11.4.2 Mitosis Detection -- 11.4.3 Radiology or Medical Imaging -- 11.4.4 Hallucination -- 11.4.5 Next-Generation Sequencing (NGS) -- 11.4.6 Drug Discovery -- 11.4.7 Sequence or Video Generation -- 11.4.8 Other Applications -- 11.5 Cancer -- 11.5.1 Factors.
11.5.1.1 Heredity.
Record Nr. UNINA-9910595599103321
Malviya Rishabha  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of the 2nd International Conference on Cognitive and Intelligent Computing [[electronic resource] ] : ICCIC 2022, 27–28 December, Hyderabad, India; Volume 1 / / edited by Amit Kumar, Gheorghita Ghinea, Suresh Merugu
Proceedings of the 2nd International Conference on Cognitive and Intelligent Computing [[electronic resource] ] : ICCIC 2022, 27–28 December, Hyderabad, India; Volume 1 / / edited by Amit Kumar, Gheorghita Ghinea, Suresh Merugu
Autore Kumar Amit
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (755 pages)
Disciplina 006.3
Altri autori (Persone) GhineaGheorghita
MeruguSuresh
Collana Cognitive Science and Technology
Soggetto topico Computational intelligence
Machine learning
Artificial intelligence
Data mining
Internet of things
Computational Intelligence
Machine Learning
Artificial Intelligence
Data Mining and Knowledge Discovery
Internet of Things
ISBN 981-9927-42-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Making Cell- Free Massive MIMO using MRC technique -- VIP Development of SPI Controller for Open-Power Processor Based Fabless SOC -- Cell-Free Massive MIMO versus Small Cells -- High Precision Navigation using Particle Swarm Optimization based KF -- Recent Advancements for Detection and Prediction of Breast Cancer using Deep Learning A Review.
Record Nr. UNISA-996550550803316
Kumar Amit  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Proceedings of the 2nd International Conference on Cognitive and Intelligent Computing : ICCIC 2022, 27–28 December, Hyderabad, India; Volume 1 / / edited by Amit Kumar, Gheorghita Ghinea, Suresh Merugu
Proceedings of the 2nd International Conference on Cognitive and Intelligent Computing : ICCIC 2022, 27–28 December, Hyderabad, India; Volume 1 / / edited by Amit Kumar, Gheorghita Ghinea, Suresh Merugu
Autore Kumar Amit
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (755 pages)
Disciplina 006.3
Altri autori (Persone) GhineaGheorghita
MeruguSuresh
Collana Cognitive Science and Technology
Soggetto topico Computational intelligence
Machine learning
Artificial intelligence
Data mining
Internet of things
Computational Intelligence
Machine Learning
Artificial Intelligence
Data Mining and Knowledge Discovery
Internet of Things
ISBN 981-9927-42-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Making Cell- Free Massive MIMO using MRC technique -- VIP Development of SPI Controller for Open-Power Processor Based Fabless SOC -- Cell-Free Massive MIMO versus Small Cells -- High Precision Navigation using Particle Swarm Optimization based KF -- Recent Advancements for Detection and Prediction of Breast Cancer using Deep Learning A Review.
Record Nr. UNINA-9910746963203321
Kumar Amit  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of the 2nd International Conference on Cognitive and Intelligent Computing . Volume 2 : ICCIC 2022, 27-28 December, Hyderabad, India / / Amit Kumar, Gheorghita Ghinea, and Suresh Merugu, editors
Proceedings of the 2nd International Conference on Cognitive and Intelligent Computing . Volume 2 : ICCIC 2022, 27-28 December, Hyderabad, India / / Amit Kumar, Gheorghita Ghinea, and Suresh Merugu, editors
Edizione [First edition.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore Pte Ltd, , [2023]
Descrizione fisica 1 online resource (0 pages)
Disciplina 006.3
Collana Cognitive Science and Technology Series
Soggetto topico Computational intelligence
Soft computing
ISBN 981-9927-46-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Automatic Multiple-Choice Question and Answer (MCQA) Generation Using Deep Learning Model -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Deep Learning Model for MCQA -- 4 Experimental Results -- 5 Conclusion -- References -- Deep Learning and IoT-Based Driver Helmet Detection and Bike Ignition -- 1 Introduction -- 2 Literature Review -- 3 Proposed Methodology -- 3.1 Algorithm -- 3.2 Working -- 4 Implementation -- 5 Conclusion and Future Scope -- References -- Cloud-Based Saline Monitoring System -- 1 Introduction -- 2 Problem Statement -- 3 Literature Survey -- 4 Background Work -- 5 Motivation -- 6 Scope of Work -- 7 Methodology -- 8 Implementation -- 9 Cloud Interface -- 10 Results -- 11 Conclusion and Future Scope -- References -- A Study on Different Neural Network Methods of Leaf Image Processing for Disease Identification -- 1 Introduction -- 2 Literature Survey -- 3 CNN Based Methods -- 4 Conclusion -- References -- CNN Depending Spectrum Sensing for Effective Data Transmission in Wireless Communication -- 1 Introduction -- 2 Dataset Details -- 3 Description of Dataset -- 4 CNN-Based Spectrum Sensing Model -- 5 Details of Training Procedure -- 6 Conclusions -- References -- Fake News Detection and Analysis Using Online Machine Learning Techniques -- 1 Introduction -- 2 Review of Related Work -- 3 Types of Feature Extraction -- 3.1 Count Vectorizer -- 3.2 Hashing Vectorizer -- 3.3 TFIDF Vectorizer -- 4 Machine Learning Algorithms -- 4.1 Passive Aggressive Classifier -- 4.2 Multinomial NB Algorithm -- 5 Methodology and Workflow of Fake News Detection -- 6 Results and Analysis -- 6.1 Passive Aggressive Algorithm -- 6.2 Multinomial NB Algorithm -- 7 Conclusions -- References -- Controlling Electrical Bulb Through Mobile Based on Light Intensity -- 1 Introduction -- 1.1 NodeMCU -- 1.2 Relay Module -- 1.3 LDR Sensor.
2 Proposed Work -- 2.1 System Design -- 3 Implementation -- 3.1 Interfacing LDR with NodeMCU -- 3.2 Interfacing Relay and NodeMCU -- 3.3 Setting up Mobile Application -- 4 Result -- 5 Conclusion -- References -- Secure Node Energetic Routing Method for Cracked Paths Identification in WSN -- 1 Introduction -- 2 Related Works -- 3 Proposed Scheme -- 3.1 Mobile Nodes Travel in Various Direction -- 3.2 Node Energetic Routing (NER) Method -- 3.3 Algorithm to Select Master Node -- 4 Performance Analysis -- 5 Conclusion -- References -- Telangana Air Pollution Stations Classification Using HACA -- 1 Introduction -- 1.1 Effects of PM 10 -- 1.2 Effects of NOx -- 2 Materials and Methods -- 2.1 Data Collection -- 2.2 Hierarchical Agglomerative Cluster Analysis (HACA) -- 3 Results and Discussions -- 4 Conclusions -- References -- Evaluation of Gastric Cancer Using Explainable AI Techniques -- 1 Introduction -- 1.1 Key Objectives of the Proposed Work -- 2 Explainable AI -- 3 Materials and Methods -- 3.1 Dataset -- 3.2 Methodology -- 4 Results and Discussion -- 4.1 Experimental Setup -- 4.2 Experimental Analysis -- 5 Conclusion -- References -- QR-Code Crime-Specific Framework with Crime-Specific Intelligence -- 1 Introduction -- 1.1 QR-Code Crime Categories -- 1.2 Digital Forensic Investigation Framework -- 2 Investigating QR-Code Crime Case -- 2.1 QR-Code Attack Scenarios -- 2.2 QR-Code Financial Fraud Scenario -- 2.3 Literature -- 2.4 The Need for a DFI Framework for QR-Code Crime Investigation -- 3 The Proposed Framework -- 4 The Crime-Specific Intelligence -- 5 Methodology -- 6 Results and Discussion -- 6.1 Observations and Findings -- 7 Conclusion -- References -- N-Gram based Convolutional Neural Network Approach for Authorship Identification -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Dataset Preparation -- 3.2 Creating N-grams.
3.3 Model Building -- 4 Experimental Studies -- 4.1 Novel Dataset by Different Authors and Genres -- 4.2 Canadian Authors-English Novels Dataset -- 4.3 PAN Dataset-Stamatatos06-Authorship-Attribution-Dataset-C10 -- 5 Conclusion -- References -- A Proficient Digital Signature Scheme Using Lightweight Cryptography -- 1 Introduction -- 2 Related Work -- 2.1 ElGamal Digital Signature -- 3 Proposed Methodology -- 3.1 Shortened Complex Digital Signature (SCDSA) -- 3.2 Parameters of SCDSA -- 4 Conclusion -- References -- Delightful Drips: A Smart Irrigation System -- 1 Introduction -- 2 Methodology -- 2.1 Message Queue Telemetry Transport -- 2.2 Master-Slave Architecture -- 2.3 Adafruit.io -- 2.4 Blynk -- 3 Components Used -- 3.1 Raspberry Pi -- 3.2 ESP8266-NodeMCU -- 3.3 MH-Series Soil Moisture Sensor -- 3.4 HW-383 Dual Channel 5v Relay -- 3.5 Solenoid Valve -- 4 Circuit Diagrams -- 5 Implementation -- 6 System Architecture -- 7 Results -- 8 Conclusion -- References -- Diagnosis of Autism Spectrum Disorder Using Context-Based Pooling and Cluster-Graph Convolution Networks -- 1 Introduction -- 2 Related Work -- 3 The Autism Brain Imaging Data Exchange Dataset -- 4 Methodology -- 4.1 Building Graph Model from the Pre-processed Data -- 4.2 Graph Convolution Networks and Context-Based Pooling -- 4.3 Population Graph -- 4.4 Classification -- 5 Results -- 6 Conclusion -- References -- Comparison of Effective Machine Learning Technique for Air Quality Forecast -- 1 Introduction -- 2 Background Work -- 3 Related Work -- 4 Proposed Work -- 4.1 Data Size Data Preprocessing -- 4.2 Data Visualization -- 4.3 Model Testing -- 5 Conclusion and Future Scope -- References -- Prediction of Toxic Gases Tolerance Level and Analysis of Impact on Human Respiratory System Using Machine Learning -- 1 Introduction -- 2 Related Work -- 3 Problem Formulation -- 4 Proposed Method.
5 Sources and Distribution of Toxic Gases -- 5.1 Hydrogen Sulfide -- 5.2 Chlorine -- 5.3 Carbon Di-oxide -- 6 Working Model of the System -- 6.1 Gas Collection -- 6.2 Sensor Chamber -- 6.3 Data Register -- 6.4 Machine Learning Model -- 7 KNN Algorithm -- 8 Results -- 9 Conclusion -- References -- Efficient Online Circulation of Blood in Geo-Blood Management: BEST Using Support Vector Machine -- 1 Introduction -- 2 Web Application for Blood Donor Search -- 2.1 Admin Module -- 2.2 User Module -- 2.3 Advantages of BEST -- 3 Donor Selection Using Support Vector Machine -- 4 Results and Discussion -- 5 Conclusion -- References -- Battery Management System Implementation in Electric Vehicle with Varying Loads Using MATLAB -- 1 Introduction -- 2 Development of Battery Management System -- 3 DC Machine Powered by Lithium-Ion Battery -- 4 DC Machine Under Different Load Conditions -- 5 Conclusion -- References -- Smart Assistant for Challenged People Using Embedded Systems -- 1 Introduction -- 2 Literature Survey and Objective -- 2.1 Literature Survey -- 2.2 Objectives -- 3 Proposed Technique -- 3.1 Software Dumping -- 4 Results and Discussions -- 5 Conclusion -- References -- Novel Approach to Identify and Eliminate Deadlocks in the 'C' Program -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Methodology -- 4 Conclusion -- References -- Novel Approach to Abstract Object Features from Java Program -- 1 Introduction -- 2 Literature Survey -- 3 Methodology -- 4 Results and Discussion -- 5 Conclusion -- References -- Detecting Logging of Forest Trees Using Sound Event Detection -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Dataset -- 3.2 Feature Extraction -- 3.3 Model Implementation -- 4 Results and Analysis -- 5 Conclusion -- References -- Education Technologies Based on Artificial Intelligence -- 1 Introduction.
2 Effective AI in Education -- 3 Screen Time -- 4 Current Trends of AI in the Education Sector -- 5 In Future -- 6 Conclusion -- References -- A Comprehensive Review on the Subject of Securing Web Application Data in Cloud Environments -- 1 Introduction -- 2 The Use of Cloud Computing in a Variety of Different Domains -- 3 The Requirement for Security in the Setting of Cloud Computing -- 4 Analysis of Cloud Security: A Detailed Review -- 4.1 Abbreviations -- 5 Results and Analysis -- 5.1 The Most Important Factors to Consider in Relation to This Research -- 6 Conclusion -- References -- Domain Adaptation of Pretrained Models for Telugu Wh-Questions -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Work -- 4 Data -- 5 Results -- 6 Conclusion -- References -- A Preprocessing and Segmentation Approach for Accurate Identification of Diseases in Potato Plant -- 1 Introduction -- 2 Literature Review -- 3 Proposed Methodology -- 3.1 Data Collection and Resizing the Image -- 3.2 Grayscale Conversion and Applying Gaussian Blur Technique -- 3.3 Segmentation -- 3.4 K-Means Clustering -- 4 Experimental Results -- 5 Conclusion -- References -- Implementation of Intelligent Advanced Extensible Interface for Dual-Port RAM-A Hardware Software Co-design Approach -- 1 Introduction -- 2 Implementation Details -- 3 Results -- 4 Conclusions -- References -- A Systematic Review on Compatibility Requirements for Communication in Hetero-Multi Blockchain Systems -- 1 Introduction -- 1.1 Consensus Mechanisms of HMBC Systems -- 1.2 Types of Consensus Mechanisms -- 1.3 Consensus Mechanisms Properties and Limitations -- 2 Smart Contracts [16] -- 2.1 Necessities of Smart Contracts [17] -- 2.2 Role of Smart Contract Locator (SCL) -- 2.3 Smart Contract Issues -- 3 Existing Solutions of HMBC Communications -- 4 Conclusion -- References.
Deep Learning-Based Emotion-Aware Music Recommendation System.
Altri titoli varianti Proceedings of the Second International Conference on Cognitive and Intelligent Computing
Record Nr. UNINA-9910746961203321
Singapore : , : Springer Nature Singapore Pte Ltd, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui