top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Comparison of minority carrier lifetime measurements in superstrate and substrate CdTe PV devices [[electronic resource] ] : preprint / / T.A. Gessert ... [and others]
Comparison of minority carrier lifetime measurements in superstrate and substrate CdTe PV devices [[electronic resource] ] : preprint / / T.A. Gessert ... [and others]
Pubbl/distr/stampa Golden, CO : , : National Renewable Energy Laboratory, , [2011]
Descrizione fisica 1 online resource (4 pages) : illustrations
Altri autori (Persone) GessertTimothy A
Collana Conference paper NREL/CP
Soggetto topico Photovoltaic cells - Research
Solar cells - Research
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Comparison of Minority Carrier Lifetime Measurements in Superstrate and Substrate CdTe PV Devices
Record Nr. UNINA-9910703252303321
Golden, CO : , : National Renewable Energy Laboratory, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Effects of Cu diffusion from ZnTe:Cu/Ti contacts on carrier lifetime of CdS/CdTe thin film solar cells [[electronic resource] /] / T.A. Gessert ... [and others]
Effects of Cu diffusion from ZnTe:Cu/Ti contacts on carrier lifetime of CdS/CdTe thin film solar cells [[electronic resource] /] / T.A. Gessert ... [and others]
Pubbl/distr/stampa [Golden, Colo.] : , : National Center for Photovoltaics, National Renewable Energy Laboratory, , [2008]
Descrizione fisica 18 pages : digital, PDF file
Altri autori (Persone) GessertTimothy A
Collana NREL/PR
Soggetto topico Photovoltaic cells - Research
Zinc telluride
Cadmium sulfide photoconductive cells
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Effects of Cu Diffusion from ZnTe
Record Nr. UNINA-9910698701003321
[Golden, Colo.] : , : National Center for Photovoltaics, National Renewable Energy Laboratory, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Evolution of CdS/CdTe device performance during Cu diffusion [[electronic resource] /] / T.A. Gessert ... [and others]
Evolution of CdS/CdTe device performance during Cu diffusion [[electronic resource] /] / T.A. Gessert ... [and others]
Pubbl/distr/stampa Golden, Colo. : , : National Renewable Energy Laboratory, , [2005]
Descrizione fisica 1 volume : digital, PDF file
Altri autori (Persone) GessertTimothy A
Collana Conference paper
Soggetto topico Solar cells - Materials
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910698290803321
Golden, Colo. : , : National Renewable Energy Laboratory, , [2005]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Formation of ZnTe:Cu/Ti contacts at high temperature for CdS/CdTe devices [[electronic resource] /] / T.A. Gessert ... [and others]
Formation of ZnTe:Cu/Ti contacts at high temperature for CdS/CdTe devices [[electronic resource] /] / T.A. Gessert ... [and others]
Pubbl/distr/stampa [Golden, Colo.] : , : National Renewable Energy Laboratory, , 2006
Descrizione fisica 18 unnumbered slides : digital, PDF file
Altri autori (Persone) GessertTimothy A
Collana NREL/PR
Soggetto topico Photovoltaic cells - Research
Solar cells - Testing
Soggetto genere / forma Conference papers and proceedings.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Formation of ZnTe
Record Nr. UNINA-9910698499003321
[Golden, Colo.] : , : National Renewable Energy Laboratory, , 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Formation of ZnTe:Cu/Ti contacts at high temperature for CdS/CdTe devices [[electronic resource] ] : preprint / / T.A. Gessert ... [and others]
Formation of ZnTe:Cu/Ti contacts at high temperature for CdS/CdTe devices [[electronic resource] ] : preprint / / T.A. Gessert ... [and others]
Pubbl/distr/stampa Golden, CO : , : National Renewable Energy Laboratory, , [2006]
Descrizione fisica 4 pages : digital, PDF file
Altri autori (Persone) GessertTimothy A
Collana NREL/CP
Soggetto topico Photovoltaic cells - Research
Solar cells - Testing
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Formation of ZnTe
Record Nr. UNINA-9910696157103321
Golden, CO : , : National Renewable Energy Laboratory, , [2006]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A Users Guide to Vacuum Technology
A Users Guide to Vacuum Technology
Autore O'Hanlon John F
Edizione [4th ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (579 pages)
Disciplina 621.5/5
Altri autori (Persone) GessertTimothy A
ISBN 1-394-17423-3
1-394-17414-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Symbols -- Part I Its Basis -- Chapter 1 Vacuum Technology -- 1.1 Units of Measurement -- References -- Chapter 2 Gas Properties -- 2.1 Kinetic Picture of a Gas -- 2.1.1 Velocity Distribution -- 2.1.2 Energy Distribution -- 2.1.3 Mean Free Path -- 2.1.4 Particle Flux -- 2.1.5 Monolayer Formation Time -- 2.1.6 Pressure -- 2.2 Gas Laws -- 2.2.1 Boyle's Law -- 2.2.2 Amontons' Law -- 2.2.3 Charles' Law -- 2.2.4 Dalton's Law -- 2.2.5 Avogadro's Law -- 2.2.6 Graham's Law -- 2.3 Elementary Gas Transport Phenomena -- 2.3.1 Viscosity -- 2.3.2 Thermal Conductivity -- 2.3.3 Diffusion -- 2.3.4 Thermal Transpiration -- References -- Chapter 3 Gas Flow -- 3.1 Flow Regimes -- 3.2 Flow Concepts -- 3.3 Continuum Flow -- 3.3.1 Orifice -- 3.3.2 Long Round Tube -- 3.3.3 Short Round Tube -- 3.4 Molecular Flow -- 3.4.1 Orifice -- 3.4.2 Long Round Tube -- 3.4.3 Short Round Tube -- 3.4.4 Irregular Structures -- 3.4.5 Components in Parallel and Series -- 3.5 Models Spanning Molecular and Viscous Flow -- References -- Chapter 4 Gas Release from Solids -- 4.1 Vaporization -- 4.2 Diffusion -- 4.2.1 Reduction of Outdiffusion by Vacuum Baking -- 4.3 Thermal Desorption -- 4.3.1 Zero Order -- 4.3.2 First Order -- 4.3.3 Second Order -- 4.3.4 Desorption from Real Surfaces -- 4.3.5 Outgassing Measurements -- 4.3.6 Outgassing Models -- 4.3.7 Reduction by Baking -- 4.4 Stimulated Desorption -- 4.4.1 Electron-Stimulated Desorption -- 4.4.2 Ion-Stimulated Desorption -- 4.4.3 Stimulated Chemical Reactions -- 4.4.4 Photo Desorption -- 4.5 Permeation -- 4.5.1 Atomic and Molecular Permeation -- 4.5.2 Dissociative Permeation -- 4.5.3 Permeation and Outgassing Units -- 4.6 Pressure Limitations During Pumping -- References -- Part II Measurement -- Chapter 5 Pressure Gauges -- 5.1 Direct Reading Gauges.
5.1.1 Diaphragm and Bourdon Gauges -- 5.1.2 Capacitance Manometer -- 5.2 Indirect Reading Gauges -- 5.2.1 Thermal Conductivity Gauges -- 5.2.2 Spinning Rotor Gauge -- 5.2.3 Ionization Gauges -- References -- Chapter 6 Flow Meters -- 6.1 Molar Flow, Mass Flow, and Throughput -- 6.2 Rotameters and Chokes -- 6.3 Differential Pressure Devices -- 6.4 Thermal Mass Flow Technique -- 6.4.1 Mass Flow Meter -- 6.4.2 Mass Flow Controller -- 6.4.3 Mass Flow Meter Calibration -- References -- Chapter 7 Pumping Speed -- 7.1 Definition -- 7.2 Mechanical Pump Speed Measurements -- 7.3 High Vacuum Pump Speed Measurements -- 7.3.1 Methods -- 7.3.2 Gas and Pump Dependence -- 7.3.3 Approximate Speed Measurements -- 7.3.4 Errors -- References -- Chapter 8 Residual Gas Analyzers -- 8.1 Instrument Description -- 8.1.1 Ion Sources -- 8.1.2 Mass Filters -- 8.1.3 Detectors -- 8.2 Installation and Operation -- 8.2.1 Operation at High Vacuum -- 8.2.2 Operation at Medium and Low Vacuum -- 8.3 Calibration -- 8.4 Choosing an Instrument -- References -- Chapter 9 Interpretation of RGA Data -- 9.1 Cracking Patterns -- 9.1.1 Dissociative Ionization -- 9.1.2 Isotopes -- 9.1.3 Multiple Ionization -- 9.1.4 Combined Effects -- 9.1.5 Ion-Molecule Reactions -- 9.2 Qualitative Analysis -- 9.3 Quantitative Analysis -- 9.3.1 Isolated Spectra -- 9.3.2 Overlapping Spectra -- References -- Part III Production -- Chapter 10 Mechanical Pumps -- 10.1 Rotary Vane -- 10.2 Lobe -- 10.3 Claw -- 10.4 Multistage Lobe -- 10.5 Scroll -- 10.6 Screw -- 10.7 Diaphragm -- 10.8 Reciprocating Piston -- 10.9 Mechanical Pump Operation -- References -- Chapter 11 Turbomolecular Pumps -- 11.1 Pumping Mechanism -- 11.2 Speed-Compression Relations -- 11.2.1 Maximum Compression -- 11.2.2 Maximum Speed -- 11.2.3 General Relation -- 11.3 Ultimate Pressure -- 11.4 Turbomolecular Pump Designs -- 11.5 Turbo-Drag Pumps.
References -- Chapter 12 Diffusion Pumps -- 12.1 Pumping Mechanism -- 12.2 Speed-Throughput Characteristics -- 12.3 Boiler Heating Effects -- 12.4 Backstreaming, Baffles, and Traps -- References -- Chapter 13 Getter and Ion Pumps -- 13.1 Getter Pumps -- 13.1.1 Titanium Sublimation -- 13.1.2 Non-evaporable Getters -- 13.2 Ion Pumps -- References -- Chapter 14 Cryogenic Pumps -- 14.1 Pumping Mechanisms -- 14.2 Speed, Pressure, and Saturation -- 14.3 Cooling Methods -- 14.4 Cryopump Characteristics -- 14.4.1 Sorption Pumps -- 14.4.2 Gas Refrigerator Pumps -- 14.4.3 Liquid Cryogen Pumps -- References -- Part IV Materials -- Chapter 15 Materials in Vacuum -- 15.1 Metals -- 15.1.1 Vaporization -- 15.1.2 Permeability -- 15.1.3 Outgassing -- 15.1.4 Structural Metals -- 15.2 Glasses and Ceramics -- 15.3 Polymers -- References -- Chapter 16 Joints Seals and Valves -- 16.1 Permanent Joints -- 16.1.1 Welding -- 16.1.2 Soldering and Brazing -- 16.1.3 Joining Glasses and Ceramics -- 16.2 Demountable Joints -- 16.2.1 Elastomer Seals -- 16.2.2 Metal Gaskets -- 16.3 Valves and Motion Feedthroughs -- 16.3.1 Small Valves -- 16.3.2 Large Valves -- 16.3.3 Special-Purpose Valves -- 16.3.4 Motion Feedthroughs -- References -- Chapter 17 Pump Fluids and Lubricants -- 17.1 Pump Fluids -- 17.1.1 Fluid Properties -- 17.1.2 Fluid Types -- 17.1.3 Selecting Fluids -- 17.1.4 Reclamation -- 17.2 Lubricants -- 17.2.1 Lubricant Properties -- 17.2.2 Selecting Lubricants -- References -- Part V Systems -- Chapter 18 Rough Vacuum Pumping -- 18.1 Exhaust Rate -- 18.1.1 Pump Size -- 18.1.2 Aerosol Formation -- 18.2 Crossover -- 18.2.1 Minimum Crossover Pressure -- 18.2.2 Maximum Crossover Pressure -- References -- Chapter 19 High Vacuum Systems -- 19.1 Diffusion-Pumped Systems -- 19.1.1 Operating Modes -- 19.1.2 Operating Issues -- 19.2 Turbo-Pumped Systems -- 19.2.1 Operating Modes.
19.2.2 Operating Issues -- 19.3 Sputter-Ion-Pumped Systems -- 19.3.1 Operating Modes -- 19.3.2 Operating Issues -- 19.4 Cryo-Pumped Systems -- 19.4.1 Operating Modes -- 19.4.2 Regeneration -- 19.4.3 Operating Issues -- 19.5 High Vacuum Chambers -- 19.5.1 Managing Water Vapor -- References -- Chapter 20 Ultraclean Vacuum Systems -- 20.1 Ultraclean Pumps -- 20.1.1 Dry Roughing Pumps -- 20.1.2 Turbopumps -- 20.1.3 Cryopumps -- 20.1.4 Sputter-Ion, TSP, and NEG Pumps -- 20.2 Ultraclean Chamber Materials and Components -- 20.3 Ultraclean System Pumping and Pressure Measurement -- References -- Chapter 21 Controlling Contamination in Vacuum Systems -- 21.1 Defining Contamination in a Vacuum Environment -- 21.1.1 Establishing Control of Vacuum Contamination -- 21.1.2 Types of Vacuum Contamination -- 21.2 Pump Contamination -- 21.2.1 Low/Rough and Medium Vacuum Pump Contamination -- 21.2.2 High and UHV Vacuum Pump Contamination -- 21.3 Evacuation Contamination -- 21.3.1 Particle Sources -- 21.3.2 Remediation Methods -- 21.4 Venting Contamination -- 21.5 Internal Components, Mechanisms, and Bearings -- 21.6 Machining Contamination -- 21.6.1 Cutting, Milling, and Turning -- 21.6.2 Grinding and Polishing -- 21.6.3 Welding -- 21.7 Process-Related Sources -- 21.7.1 Deposition Sources -- 21.7.2 Leak Detection -- 21.8 Lubrication Contamination -- 21.8.1 Liquid Lubricants -- 21.8.2 Solid Lubricants -- 21.8.3 Lamellar, Polymer, and Suspension Lubricants -- 21.9 Vacuum System and Component Cleaning -- 21.9.1 Designing a Cleaning Process -- 21.10 Review of Clean Room Environments for Vacuum Systems -- 21.10.1 The Cleanroom Environment -- 21.10.2 Using Vacuum Systems in a Cleanroom Environment -- References -- Chapter 22 High Flow Systems -- 22.1 Mechanically Pumped Systems -- 22.2 Throttled High Vacuum Systems -- 22.2.1 Chamber Designs -- 22.2.2 Turbo Pumped.
22.2.3 Cryo Pumped -- References -- Chapter 23 Multichambered Systems -- 23.1 Flexible Substrates -- 23.2 Rigid Substrates -- 23.2.1 Inline Systems -- 23.2.2 Cluster Systems -- 23.3 Analytical Instruments -- References -- Chapter 24 Leak Detection -- 24.1 Mass Spectrometer Leak Detectors -- 24.1.1 Forward Flow -- 24.1.2 Counter flow -- 24.2 Performance -- 24.2.1 Sensitivity -- 24.2.2 Response Time -- 24.2.3 Testing Pressurized Chambers -- 24.2.4 Calibration -- 24.3 Leak Hunting Techniques -- 24.4 Leak Detecting with Hydrogen Tracer Gas -- References -- Part VI Appendices -- Appendix A Units and Constants -- A.1 Physical Constants -- A.2 SI Base Units -- A.3 Conversion Factors -- Appendix B Gas Properties -- B.1 Mean Free Paths of Gasses as a Function of Pressure at T = 25°C -- B.2 Physical Properties of Gasses and Vapors at T = 0°C -- B.3 Cryogenic Properties of Gases -- B.4 Gas Conductance and Flow Formulas -- B.5 Vapor Pressure Curves of Common Gases -- B.6 Appearance of Discharges in Gases and Vapors at Low Pressures -- B.7 DC Breakdown Voltages for Air and Helium Between Flat Parallel Plates -- B.8 Particle Settling Velocities in Air -- Appendix C Material Properties -- C.1 Outgassing Rates of Vacuum-Baked Metals -- C.2 Outgassing Rates of Unbaked Metals -- C.3 Outgassing Rates of Ceramics and Glasses -- C.4 Outgassing Rates of Elastomers -- C.5 Permeability of Polymeric Materials -- C.6 Vapor Pressure Curves of the Solid and Liquid Elements (Sheet A) -- C.7 Outgassing Rates of Polymers -- C.8 Austenitic Stainless Steels -- Appendix D Isotopes -- D.1 Natural Abundances -- Appendix E Cracking Patterns -- E.1 Cracking Patterns of Pump Fluids -- E.2 Cracking Patterns of Gases -- E.3 Cracking Patterns of Common Vapors -- E.4 Cracking Patterns of Common Solvents -- E.5 Cracking Patterns of Semiconductor Dopants -- Appendix F Pump Fluid Properties.
F.1 Compatibility of Elastomers and Pump Fluids.
Record Nr. UNINA-9910830989503321
O'Hanlon John F  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A Users Guide to Vacuum Technology
A Users Guide to Vacuum Technology
Autore O'Hanlon John F
Edizione [4th ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (579 pages)
Disciplina 621.5/5
Altri autori (Persone) GessertTimothy A
ISBN 1-394-17423-3
1-394-17414-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Symbols -- Part I Its Basis -- Chapter 1 Vacuum Technology -- 1.1 Units of Measurement -- References -- Chapter 2 Gas Properties -- 2.1 Kinetic Picture of a Gas -- 2.1.1 Velocity Distribution -- 2.1.2 Energy Distribution -- 2.1.3 Mean Free Path -- 2.1.4 Particle Flux -- 2.1.5 Monolayer Formation Time -- 2.1.6 Pressure -- 2.2 Gas Laws -- 2.2.1 Boyle's Law -- 2.2.2 Amontons' Law -- 2.2.3 Charles' Law -- 2.2.4 Dalton's Law -- 2.2.5 Avogadro's Law -- 2.2.6 Graham's Law -- 2.3 Elementary Gas Transport Phenomena -- 2.3.1 Viscosity -- 2.3.2 Thermal Conductivity -- 2.3.3 Diffusion -- 2.3.4 Thermal Transpiration -- References -- Chapter 3 Gas Flow -- 3.1 Flow Regimes -- 3.2 Flow Concepts -- 3.3 Continuum Flow -- 3.3.1 Orifice -- 3.3.2 Long Round Tube -- 3.3.3 Short Round Tube -- 3.4 Molecular Flow -- 3.4.1 Orifice -- 3.4.2 Long Round Tube -- 3.4.3 Short Round Tube -- 3.4.4 Irregular Structures -- 3.4.5 Components in Parallel and Series -- 3.5 Models Spanning Molecular and Viscous Flow -- References -- Chapter 4 Gas Release from Solids -- 4.1 Vaporization -- 4.2 Diffusion -- 4.2.1 Reduction of Outdiffusion by Vacuum Baking -- 4.3 Thermal Desorption -- 4.3.1 Zero Order -- 4.3.2 First Order -- 4.3.3 Second Order -- 4.3.4 Desorption from Real Surfaces -- 4.3.5 Outgassing Measurements -- 4.3.6 Outgassing Models -- 4.3.7 Reduction by Baking -- 4.4 Stimulated Desorption -- 4.4.1 Electron-Stimulated Desorption -- 4.4.2 Ion-Stimulated Desorption -- 4.4.3 Stimulated Chemical Reactions -- 4.4.4 Photo Desorption -- 4.5 Permeation -- 4.5.1 Atomic and Molecular Permeation -- 4.5.2 Dissociative Permeation -- 4.5.3 Permeation and Outgassing Units -- 4.6 Pressure Limitations During Pumping -- References -- Part II Measurement -- Chapter 5 Pressure Gauges -- 5.1 Direct Reading Gauges.
5.1.1 Diaphragm and Bourdon Gauges -- 5.1.2 Capacitance Manometer -- 5.2 Indirect Reading Gauges -- 5.2.1 Thermal Conductivity Gauges -- 5.2.2 Spinning Rotor Gauge -- 5.2.3 Ionization Gauges -- References -- Chapter 6 Flow Meters -- 6.1 Molar Flow, Mass Flow, and Throughput -- 6.2 Rotameters and Chokes -- 6.3 Differential Pressure Devices -- 6.4 Thermal Mass Flow Technique -- 6.4.1 Mass Flow Meter -- 6.4.2 Mass Flow Controller -- 6.4.3 Mass Flow Meter Calibration -- References -- Chapter 7 Pumping Speed -- 7.1 Definition -- 7.2 Mechanical Pump Speed Measurements -- 7.3 High Vacuum Pump Speed Measurements -- 7.3.1 Methods -- 7.3.2 Gas and Pump Dependence -- 7.3.3 Approximate Speed Measurements -- 7.3.4 Errors -- References -- Chapter 8 Residual Gas Analyzers -- 8.1 Instrument Description -- 8.1.1 Ion Sources -- 8.1.2 Mass Filters -- 8.1.3 Detectors -- 8.2 Installation and Operation -- 8.2.1 Operation at High Vacuum -- 8.2.2 Operation at Medium and Low Vacuum -- 8.3 Calibration -- 8.4 Choosing an Instrument -- References -- Chapter 9 Interpretation of RGA Data -- 9.1 Cracking Patterns -- 9.1.1 Dissociative Ionization -- 9.1.2 Isotopes -- 9.1.3 Multiple Ionization -- 9.1.4 Combined Effects -- 9.1.5 Ion-Molecule Reactions -- 9.2 Qualitative Analysis -- 9.3 Quantitative Analysis -- 9.3.1 Isolated Spectra -- 9.3.2 Overlapping Spectra -- References -- Part III Production -- Chapter 10 Mechanical Pumps -- 10.1 Rotary Vane -- 10.2 Lobe -- 10.3 Claw -- 10.4 Multistage Lobe -- 10.5 Scroll -- 10.6 Screw -- 10.7 Diaphragm -- 10.8 Reciprocating Piston -- 10.9 Mechanical Pump Operation -- References -- Chapter 11 Turbomolecular Pumps -- 11.1 Pumping Mechanism -- 11.2 Speed-Compression Relations -- 11.2.1 Maximum Compression -- 11.2.2 Maximum Speed -- 11.2.3 General Relation -- 11.3 Ultimate Pressure -- 11.4 Turbomolecular Pump Designs -- 11.5 Turbo-Drag Pumps.
References -- Chapter 12 Diffusion Pumps -- 12.1 Pumping Mechanism -- 12.2 Speed-Throughput Characteristics -- 12.3 Boiler Heating Effects -- 12.4 Backstreaming, Baffles, and Traps -- References -- Chapter 13 Getter and Ion Pumps -- 13.1 Getter Pumps -- 13.1.1 Titanium Sublimation -- 13.1.2 Non-evaporable Getters -- 13.2 Ion Pumps -- References -- Chapter 14 Cryogenic Pumps -- 14.1 Pumping Mechanisms -- 14.2 Speed, Pressure, and Saturation -- 14.3 Cooling Methods -- 14.4 Cryopump Characteristics -- 14.4.1 Sorption Pumps -- 14.4.2 Gas Refrigerator Pumps -- 14.4.3 Liquid Cryogen Pumps -- References -- Part IV Materials -- Chapter 15 Materials in Vacuum -- 15.1 Metals -- 15.1.1 Vaporization -- 15.1.2 Permeability -- 15.1.3 Outgassing -- 15.1.4 Structural Metals -- 15.2 Glasses and Ceramics -- 15.3 Polymers -- References -- Chapter 16 Joints Seals and Valves -- 16.1 Permanent Joints -- 16.1.1 Welding -- 16.1.2 Soldering and Brazing -- 16.1.3 Joining Glasses and Ceramics -- 16.2 Demountable Joints -- 16.2.1 Elastomer Seals -- 16.2.2 Metal Gaskets -- 16.3 Valves and Motion Feedthroughs -- 16.3.1 Small Valves -- 16.3.2 Large Valves -- 16.3.3 Special-Purpose Valves -- 16.3.4 Motion Feedthroughs -- References -- Chapter 17 Pump Fluids and Lubricants -- 17.1 Pump Fluids -- 17.1.1 Fluid Properties -- 17.1.2 Fluid Types -- 17.1.3 Selecting Fluids -- 17.1.4 Reclamation -- 17.2 Lubricants -- 17.2.1 Lubricant Properties -- 17.2.2 Selecting Lubricants -- References -- Part V Systems -- Chapter 18 Rough Vacuum Pumping -- 18.1 Exhaust Rate -- 18.1.1 Pump Size -- 18.1.2 Aerosol Formation -- 18.2 Crossover -- 18.2.1 Minimum Crossover Pressure -- 18.2.2 Maximum Crossover Pressure -- References -- Chapter 19 High Vacuum Systems -- 19.1 Diffusion-Pumped Systems -- 19.1.1 Operating Modes -- 19.1.2 Operating Issues -- 19.2 Turbo-Pumped Systems -- 19.2.1 Operating Modes.
19.2.2 Operating Issues -- 19.3 Sputter-Ion-Pumped Systems -- 19.3.1 Operating Modes -- 19.3.2 Operating Issues -- 19.4 Cryo-Pumped Systems -- 19.4.1 Operating Modes -- 19.4.2 Regeneration -- 19.4.3 Operating Issues -- 19.5 High Vacuum Chambers -- 19.5.1 Managing Water Vapor -- References -- Chapter 20 Ultraclean Vacuum Systems -- 20.1 Ultraclean Pumps -- 20.1.1 Dry Roughing Pumps -- 20.1.2 Turbopumps -- 20.1.3 Cryopumps -- 20.1.4 Sputter-Ion, TSP, and NEG Pumps -- 20.2 Ultraclean Chamber Materials and Components -- 20.3 Ultraclean System Pumping and Pressure Measurement -- References -- Chapter 21 Controlling Contamination in Vacuum Systems -- 21.1 Defining Contamination in a Vacuum Environment -- 21.1.1 Establishing Control of Vacuum Contamination -- 21.1.2 Types of Vacuum Contamination -- 21.2 Pump Contamination -- 21.2.1 Low/Rough and Medium Vacuum Pump Contamination -- 21.2.2 High and UHV Vacuum Pump Contamination -- 21.3 Evacuation Contamination -- 21.3.1 Particle Sources -- 21.3.2 Remediation Methods -- 21.4 Venting Contamination -- 21.5 Internal Components, Mechanisms, and Bearings -- 21.6 Machining Contamination -- 21.6.1 Cutting, Milling, and Turning -- 21.6.2 Grinding and Polishing -- 21.6.3 Welding -- 21.7 Process-Related Sources -- 21.7.1 Deposition Sources -- 21.7.2 Leak Detection -- 21.8 Lubrication Contamination -- 21.8.1 Liquid Lubricants -- 21.8.2 Solid Lubricants -- 21.8.3 Lamellar, Polymer, and Suspension Lubricants -- 21.9 Vacuum System and Component Cleaning -- 21.9.1 Designing a Cleaning Process -- 21.10 Review of Clean Room Environments for Vacuum Systems -- 21.10.1 The Cleanroom Environment -- 21.10.2 Using Vacuum Systems in a Cleanroom Environment -- References -- Chapter 22 High Flow Systems -- 22.1 Mechanically Pumped Systems -- 22.2 Throttled High Vacuum Systems -- 22.2.1 Chamber Designs -- 22.2.2 Turbo Pumped.
22.2.3 Cryo Pumped -- References -- Chapter 23 Multichambered Systems -- 23.1 Flexible Substrates -- 23.2 Rigid Substrates -- 23.2.1 Inline Systems -- 23.2.2 Cluster Systems -- 23.3 Analytical Instruments -- References -- Chapter 24 Leak Detection -- 24.1 Mass Spectrometer Leak Detectors -- 24.1.1 Forward Flow -- 24.1.2 Counter flow -- 24.2 Performance -- 24.2.1 Sensitivity -- 24.2.2 Response Time -- 24.2.3 Testing Pressurized Chambers -- 24.2.4 Calibration -- 24.3 Leak Hunting Techniques -- 24.4 Leak Detecting with Hydrogen Tracer Gas -- References -- Part VI Appendices -- Appendix A Units and Constants -- A.1 Physical Constants -- A.2 SI Base Units -- A.3 Conversion Factors -- Appendix B Gas Properties -- B.1 Mean Free Paths of Gasses as a Function of Pressure at T = 25°C -- B.2 Physical Properties of Gasses and Vapors at T = 0°C -- B.3 Cryogenic Properties of Gases -- B.4 Gas Conductance and Flow Formulas -- B.5 Vapor Pressure Curves of Common Gases -- B.6 Appearance of Discharges in Gases and Vapors at Low Pressures -- B.7 DC Breakdown Voltages for Air and Helium Between Flat Parallel Plates -- B.8 Particle Settling Velocities in Air -- Appendix C Material Properties -- C.1 Outgassing Rates of Vacuum-Baked Metals -- C.2 Outgassing Rates of Unbaked Metals -- C.3 Outgassing Rates of Ceramics and Glasses -- C.4 Outgassing Rates of Elastomers -- C.5 Permeability of Polymeric Materials -- C.6 Vapor Pressure Curves of the Solid and Liquid Elements (Sheet A) -- C.7 Outgassing Rates of Polymers -- C.8 Austenitic Stainless Steels -- Appendix D Isotopes -- D.1 Natural Abundances -- Appendix E Cracking Patterns -- E.1 Cracking Patterns of Pump Fluids -- E.2 Cracking Patterns of Gases -- E.3 Cracking Patterns of Common Vapors -- E.4 Cracking Patterns of Common Solvents -- E.5 Cracking Patterns of Semiconductor Dopants -- Appendix F Pump Fluid Properties.
F.1 Compatibility of Elastomers and Pump Fluids.
Record Nr. UNINA-9910841218203321
O'Hanlon John F  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui