top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence and Image Analysis : 18th International Symposium on Artificial Intelligence and Mathematics, ISAIM 2024, and 22nd International Workshop on Combinatorial Image Analysis, IWCIA 2024, Fort Lauderdale, FL, USA, January 8–10, 2024, Revised Selected Papers / / edited by Reneta P. Barneva, Valentin E. Brimkov, Claudio Gentile, Aldo Pacchiano
Artificial Intelligence and Image Analysis : 18th International Symposium on Artificial Intelligence and Mathematics, ISAIM 2024, and 22nd International Workshop on Combinatorial Image Analysis, IWCIA 2024, Fort Lauderdale, FL, USA, January 8–10, 2024, Revised Selected Papers / / edited by Reneta P. Barneva, Valentin E. Brimkov, Claudio Gentile, Aldo Pacchiano
Autore Barneva Reneta P
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (269 pages)
Disciplina 006.37
Altri autori (Persone) BrimkovValentin E
GentileClaudio
PacchianoAldo
Collana Lecture Notes in Computer Science
Soggetto topico Computer vision
Image processing
Computer science - Mathematics
Discrete mathematics
Artificial intelligence
Computer networks
Computer Vision
Image Processing
Discrete Mathematics in Computer Science
Artificial Intelligence
Computer Communication Networks
Visió per ordinador
Processament d'imatges
Intel·ligència artificial
Matemàtica discreta
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 9783031637353
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- A Model for Optimizing Recalculation Schedules to Minimize Regret. -- A Theory of Learning with Competing Objectives and User Feedback. -- Trick Costs for $\alpha\mu$ and New Relatives. -- A Differential Approach for Several NP-hard Optimization Problems. -- On the Computational Complexities of Finding Selected Refutations of Linear Programs. -- Extending the Tractability of the Clique Problem via Graph Classes Generalizing Treewidth. -- Principled Approaches for Learning to Defer with Multiple Experts. -- On Sample Reuse Methods for Answering $k$-wise Statistical Queries. -- Neural Diffusion Graph Convolutional Network for Predicting Heat Transfer in Selective Laser Melting. -- New Proportion Measures of Discrimination Based on Natural Direct and Indirect Effects. -- Addressing Discretization Artifacts in Tomography by Accessing and Balancing Pixel Coverage of Projections. -- Finding the Straight Skeleton for 3D Orthogonal Polyhedrons: A Combinatorial Approach. -- Towards a Unifying View on Monotone Constructive Definitions. -- Partial Boolean Functions for QBF Semantics.
Record Nr. UNINA-9910874693603321
Barneva Reneta P  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Graphs and combinatorial optimization : from theory to applications : CTW2020 proceedings / / Claudio Gentile, Giuseppe Stecca, Paolo Ventura, editors
Graphs and combinatorial optimization : from theory to applications : CTW2020 proceedings / / Claudio Gentile, Giuseppe Stecca, Paolo Ventura, editors
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XIII, 413 p. 97 illus., 38 illus. in color.)
Disciplina 519.3
Collana AIRO Springer Series
Soggetto topico Combinatorial optimization
Optimització combinatòria
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-63072-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto W. Hochstattler and J. Wiehe, The Chromatic Polynomial of a Digraph -- J. Dìaz et al., On List k-Coloring Convex Bipartite Graphs -- E. Kubicka et al., Total chromatic sum for trees -- S. Ghosal and S. C. Ghosh, An incremental search heuristic for coloring vertices of a graph -- S. Bandopadhyay et al., Improved Bounds on the Span of L(1,2)-edge Labeling of Some Infinite Regular Grids -- E. Althaus and S. Ziegler, Optimal Tree Decompositions Revisited: A Simpler Linear-Time FPT Algorithm -- H. Kerivin and A. Wagler, On superperfection of edge intersection graphs of paths -- L. Liberti et al., A cycle-based formulation for the Distance Geometry Problem -- P. Samer and D. Haugland, The unsuitable neighbourhood inequalities for the fixed cardinality stable set polytope -- Lucas L. S. Portugal et al., Relating hypergraph parameters of generalized power graphs -- A. Nixon, Assur decompositions of direction-length frameworks -- M. Hiller et al., On the Burning Number of p-Caterpillars -- J. Boeckmann and C. Thielen, An Approximation Algorithm for Network Flow Interdiction with Unit Costs and Two Capacities -- T. Bacci and S. Nicoloso, On the benchmark instances for the Bin Packing Problem with Conflicts -- Barbara M. Anthony and Alison M. Marr, Directed Zagreb Indices -- F. Couto et al., Edge Tree Spanners -- S. Khalife, Sequence graphs: characterization and counting of admissible elements -- L. Burahem Martins et al., On solving the time window assignment vehicle routing problem via iterated local search -- M. Barbato et al., Synchronized Pickup and Delivery Problems with Connecting FIFO Stack -- A. Teymourifar et al., A Comparison Between Simultaneous and Hierarchical Approaches to Solve a Multi-Objective Location-Routing Problem -- M. Bodirsky et al., Piecewise Linear Valued Constraint Satisfaction Problems with Fixed Number of Variables -- M. Cacciola et al., A Lagrangian approach to Chance Constrained Routing with Local Broadcast -- P. Detti et al., A metaheuristic approach for biological sample transportation in healthcare -- Diego M. Pinto and G. Stecca, Optimal Planning of Waste Sorting Operations through Mixed Integer Linear Programming -- G. Micheli et al., Selecting and Initializing Representative Days for Generation and Transmission Expansion Planning with High Shares of Renewables -- T. Bacci et al., Start-up/Shut-down MINLP formulations for the Unit Commitment with Ramp Constraints -- J. Lee et al., Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions -- M. Aprile et al., Recognizing Cartesian products of matrices and polytopes -- A. Frank, Special subclass of Generalized Semi-Markov Decision Processes with discrete time -- R. Seccia et al., Coupling Machine Learning and Integer Programming for Optimal TV Promo Scheduling -- F. Mendoza-Granada and M. Villagra, A Distributed Algorithm for Spectral Sparsification of Graphs with Applications to Data Clustering.
Record Nr. UNISA-996466551003316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Graphs and combinatorial optimization : from theory to applications : CTW2020 proceedings / / Claudio Gentile, Giuseppe Stecca, Paolo Ventura, editors
Graphs and combinatorial optimization : from theory to applications : CTW2020 proceedings / / Claudio Gentile, Giuseppe Stecca, Paolo Ventura, editors
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XIII, 413 p. 97 illus., 38 illus. in color.)
Disciplina 519.3
Collana AIRO Springer Series
Soggetto topico Combinatorial optimization
Optimització combinatòria
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-63072-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto W. Hochstattler and J. Wiehe, The Chromatic Polynomial of a Digraph -- J. Dìaz et al., On List k-Coloring Convex Bipartite Graphs -- E. Kubicka et al., Total chromatic sum for trees -- S. Ghosal and S. C. Ghosh, An incremental search heuristic for coloring vertices of a graph -- S. Bandopadhyay et al., Improved Bounds on the Span of L(1,2)-edge Labeling of Some Infinite Regular Grids -- E. Althaus and S. Ziegler, Optimal Tree Decompositions Revisited: A Simpler Linear-Time FPT Algorithm -- H. Kerivin and A. Wagler, On superperfection of edge intersection graphs of paths -- L. Liberti et al., A cycle-based formulation for the Distance Geometry Problem -- P. Samer and D. Haugland, The unsuitable neighbourhood inequalities for the fixed cardinality stable set polytope -- Lucas L. S. Portugal et al., Relating hypergraph parameters of generalized power graphs -- A. Nixon, Assur decompositions of direction-length frameworks -- M. Hiller et al., On the Burning Number of p-Caterpillars -- J. Boeckmann and C. Thielen, An Approximation Algorithm for Network Flow Interdiction with Unit Costs and Two Capacities -- T. Bacci and S. Nicoloso, On the benchmark instances for the Bin Packing Problem with Conflicts -- Barbara M. Anthony and Alison M. Marr, Directed Zagreb Indices -- F. Couto et al., Edge Tree Spanners -- S. Khalife, Sequence graphs: characterization and counting of admissible elements -- L. Burahem Martins et al., On solving the time window assignment vehicle routing problem via iterated local search -- M. Barbato et al., Synchronized Pickup and Delivery Problems with Connecting FIFO Stack -- A. Teymourifar et al., A Comparison Between Simultaneous and Hierarchical Approaches to Solve a Multi-Objective Location-Routing Problem -- M. Bodirsky et al., Piecewise Linear Valued Constraint Satisfaction Problems with Fixed Number of Variables -- M. Cacciola et al., A Lagrangian approach to Chance Constrained Routing with Local Broadcast -- P. Detti et al., A metaheuristic approach for biological sample transportation in healthcare -- Diego M. Pinto and G. Stecca, Optimal Planning of Waste Sorting Operations through Mixed Integer Linear Programming -- G. Micheli et al., Selecting and Initializing Representative Days for Generation and Transmission Expansion Planning with High Shares of Renewables -- T. Bacci et al., Start-up/Shut-down MINLP formulations for the Unit Commitment with Ramp Constraints -- J. Lee et al., Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions -- M. Aprile et al., Recognizing Cartesian products of matrices and polytopes -- A. Frank, Special subclass of Generalized Semi-Markov Decision Processes with discrete time -- R. Seccia et al., Coupling Machine Learning and Integer Programming for Optimal TV Promo Scheduling -- F. Mendoza-Granada and M. Villagra, A Distributed Algorithm for Spectral Sparsification of Graphs with Applications to Data Clustering.
Record Nr. UNINA-9910482970703321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Learning theory : 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 : proceedings / / Nader H. Bshouty, Claudio Gentile (editors)
Learning theory : 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 : proceedings / / Nader H. Bshouty, Claudio Gentile (editors)
Edizione [1st ed. 2007.]
Pubbl/distr/stampa Berlin, Germany : , : Springer, , [2007]
Descrizione fisica 1 online resource (644 p.)
Disciplina 006.31
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Machine learning
ISBN 1-280-94078-6
9786610940783
3-540-72927-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Invited Presentations -- Property Testing: A Learning Theory Perspective -- Spectral Algorithms for Learning and Clustering -- Unsupervised, Semisupervised and Active Learning I -- Minimax Bounds for Active Learning -- Stability of k-Means Clustering -- Margin Based Active Learning -- Unsupervised, Semisupervised and Active Learning II -- Learning Large-Alphabet and Analog Circuits with Value Injection Queries -- Teaching Dimension and the Complexity of Active Learning -- Multi-view Regression Via Canonical Correlation Analysis -- Statistical Learning Theory -- Aggregation by Exponential Weighting and Sharp Oracle Inequalities -- Occam’s Hammer -- Resampling-Based Confidence Regions and Multiple Tests for a Correlated Random Vector -- Suboptimality of Penalized Empirical Risk Minimization in Classification -- Transductive Rademacher Complexity and Its Applications -- Inductive Inference -- U-Shaped, Iterative, and Iterative-with-Counter Learning -- Mind Change Optimal Learning of Bayes Net Structure -- Learning Correction Grammars -- Mitotic Classes -- Online and Reinforcement Learning I -- Regret to the Best vs. Regret to the Average -- Strategies for Prediction Under Imperfect Monitoring -- Bounded Parameter Markov Decision Processes with Average Reward Criterion -- Online and Reinforcement Learning II -- On-Line Estimation with the Multivariate Gaussian Distribution -- Generalised Entropy and Asymptotic Complexities of Languages -- Q-Learning with Linear Function Approximation -- Regularized Learning, Kernel Methods, SVM -- How Good Is a Kernel When Used as a Similarity Measure? -- Gaps in Support Vector Optimization -- Learning Languages with Rational Kernels -- Generalized SMO-Style Decomposition Algorithms -- Learning Algorithms and Limitations on Learning -- Learning Nested Halfspaces and Uphill Decision Trees -- An Efficient Re-scaled Perceptron Algorithm for Conic Systems -- A Lower Bound for Agnostically Learning Disjunctions -- Sketching Information Divergences -- Competing with Stationary Prediction Strategies -- Online and Reinforcement Learning III -- Improved Rates for the Stochastic Continuum-Armed Bandit Problem -- Learning Permutations with Exponential Weights -- Online and Reinforcement Learning IV -- Multitask Learning with Expert Advice -- Online Learning with Prior Knowledge -- Dimensionality Reduction -- Nonlinear Estimators and Tail Bounds for Dimension Reduction in l 1 Using Cauchy Random Projections -- Sparse Density Estimation with ?1 Penalties -- ?1 Regularization in Infinite Dimensional Feature Spaces -- Prediction by Categorical Features: Generalization Properties and Application to Feature Ranking -- Other Approaches -- Observational Learning in Random Networks -- The Loss Rank Principle for Model Selection -- Robust Reductions from Ranking to Classification -- Open Problems -- Rademacher Margin Complexity -- Open Problems in Efficient Semi-supervised PAC Learning -- Resource-Bounded Information Gathering for Correlation Clustering -- Are There Local Maxima in the Infinite-Sample Likelihood of Gaussian Mixture Estimation? -- When Is There a Free Matrix Lunch?.
Record Nr. UNISA-996465400203316
Berlin, Germany : , : Springer, , [2007]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Learning theory : 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 : proceedings / / Nader H. Bshouty, Claudio Gentile (editors)
Learning theory : 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 : proceedings / / Nader H. Bshouty, Claudio Gentile (editors)
Edizione [1st ed. 2007.]
Pubbl/distr/stampa Berlin, Germany : , : Springer, , [2007]
Descrizione fisica 1 online resource (644 p.)
Disciplina 006.31
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Machine learning
ISBN 1-280-94078-6
9786610940783
3-540-72927-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Invited Presentations -- Property Testing: A Learning Theory Perspective -- Spectral Algorithms for Learning and Clustering -- Unsupervised, Semisupervised and Active Learning I -- Minimax Bounds for Active Learning -- Stability of k-Means Clustering -- Margin Based Active Learning -- Unsupervised, Semisupervised and Active Learning II -- Learning Large-Alphabet and Analog Circuits with Value Injection Queries -- Teaching Dimension and the Complexity of Active Learning -- Multi-view Regression Via Canonical Correlation Analysis -- Statistical Learning Theory -- Aggregation by Exponential Weighting and Sharp Oracle Inequalities -- Occam’s Hammer -- Resampling-Based Confidence Regions and Multiple Tests for a Correlated Random Vector -- Suboptimality of Penalized Empirical Risk Minimization in Classification -- Transductive Rademacher Complexity and Its Applications -- Inductive Inference -- U-Shaped, Iterative, and Iterative-with-Counter Learning -- Mind Change Optimal Learning of Bayes Net Structure -- Learning Correction Grammars -- Mitotic Classes -- Online and Reinforcement Learning I -- Regret to the Best vs. Regret to the Average -- Strategies for Prediction Under Imperfect Monitoring -- Bounded Parameter Markov Decision Processes with Average Reward Criterion -- Online and Reinforcement Learning II -- On-Line Estimation with the Multivariate Gaussian Distribution -- Generalised Entropy and Asymptotic Complexities of Languages -- Q-Learning with Linear Function Approximation -- Regularized Learning, Kernel Methods, SVM -- How Good Is a Kernel When Used as a Similarity Measure? -- Gaps in Support Vector Optimization -- Learning Languages with Rational Kernels -- Generalized SMO-Style Decomposition Algorithms -- Learning Algorithms and Limitations on Learning -- Learning Nested Halfspaces and Uphill Decision Trees -- An Efficient Re-scaled Perceptron Algorithm for Conic Systems -- A Lower Bound for Agnostically Learning Disjunctions -- Sketching Information Divergences -- Competing with Stationary Prediction Strategies -- Online and Reinforcement Learning III -- Improved Rates for the Stochastic Continuum-Armed Bandit Problem -- Learning Permutations with Exponential Weights -- Online and Reinforcement Learning IV -- Multitask Learning with Expert Advice -- Online Learning with Prior Knowledge -- Dimensionality Reduction -- Nonlinear Estimators and Tail Bounds for Dimension Reduction in l 1 Using Cauchy Random Projections -- Sparse Density Estimation with ?1 Penalties -- ?1 Regularization in Infinite Dimensional Feature Spaces -- Prediction by Categorical Features: Generalization Properties and Application to Feature Ranking -- Other Approaches -- Observational Learning in Random Networks -- The Loss Rank Principle for Model Selection -- Robust Reductions from Ranking to Classification -- Open Problems -- Rademacher Margin Complexity -- Open Problems in Efficient Semi-supervised PAC Learning -- Resource-Bounded Information Gathering for Correlation Clustering -- Are There Local Maxima in the Infinite-Sample Likelihood of Gaussian Mixture Estimation? -- When Is There a Free Matrix Lunch?.
Record Nr. UNINA-9910767552603321
Berlin, Germany : , : Springer, , [2007]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui