Advances in Computational Intelligence Systems : Contributions Presented at the 19th UK Workshop on Computational Intelligence, September 4-6, 2019, Portsmouth, UK / / edited by Zhaojie Ju, Longzhi Yang, Chenguang Yang, Alexander Gegov, Dalin Zhou
| Advances in Computational Intelligence Systems : Contributions Presented at the 19th UK Workshop on Computational Intelligence, September 4-6, 2019, Portsmouth, UK / / edited by Zhaojie Ju, Longzhi Yang, Chenguang Yang, Alexander Gegov, Dalin Zhou |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (553 pages) |
| Disciplina | 006.3 |
| Collana | Advances in Intelligent Systems and Computing |
| Soggetto topico |
Computational intelligence
Artificial intelligence Computational Intelligence Artificial Intelligence |
| ISBN | 3-030-29933-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Fuzzy Systems -- Intelligence in Roobtics -- Deep Learning Approaches -- Optimisation and Classification -- Detection, Inference and Prediction -- Hybrid Methods -- Emerging Intelligence -- Intelligent Healthcare -- Engineering Data- and Model-Driven Applications. |
| Record Nr. | UNINA-9910483467203321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Computational Intelligence Systems : Contributions Presented at the 18th UK Workshop on Computational Intelligence, September 5-7, 2018, Nottingham, UK / / edited by Ahmad Lotfi, Hamid Bouchachia, Alexander Gegov, Caroline Langensiepen, Martin McGinnity
| Advances in Computational Intelligence Systems : Contributions Presented at the 18th UK Workshop on Computational Intelligence, September 5-7, 2018, Nottingham, UK / / edited by Ahmad Lotfi, Hamid Bouchachia, Alexander Gegov, Caroline Langensiepen, Martin McGinnity |
| Edizione | [1st ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
| Descrizione fisica | 1 online resource (399 pages) |
| Disciplina | 006.3 |
| Collana | Advances in Intelligent Systems and Computing |
| Soggetto topico |
Computational intelligence
Artificial intelligence Computational Intelligence Artificial Intelligence |
| ISBN | 3-319-97982-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | On the Integrity of Performance Comparison for Evolutionary Multi-objective Optimisation Algorithms -- The Influence of Age Assignments on the Performance of Immune Algorithms -- Evolutionary Constraint in Artificial Gene Regulatory Networks -- Exploiting Tournament Selection for Efficient Parallel Genetic Programming -- Solving Partial Differential Equations with Bernstein Neural Networks -- Daily Energy Price Forecasting Using a Polynomial NARMAX Model -- Model Selection in Time Series Forecasting -- Fuzzy Modeling for Uncertain Nonlinear Systems using Fuzzy Equations and Z-numbers -- Medical Expert Systems – A Study of Trust and Acceptance by Healthcare Stakeholders -- Agent Based Micro-Simulation of a Passenger Rail System Using Customer Survey Data -- Fintech Bitcoin Smart Investment based on the Random Neural Network with a Genetic Algorithm -- Generating ANFISs through Rule Interpolation: An Initial Investigation -- Disentangling the Latent Space of (Variational) Autoencoders for NLP -- A Low Computational Approach for Assistive Esophageal Adenocarcinoma and Colorectal Cancer Detection -- Learning from Interaction: An Intelligent Networked based Human-bot and Bot-bot Chatbot System -- A Study on CNN Transfer Learning for Image Classification -- Dendritic Cell Algorithm with Fuzzy Inference System for Input Signal Generation -- A Method of Abstractness Ratings for Chinese Concepts -- Effective Diagnosis of Diabetes with a Decision Tree-initialised Neuro-fuzzy Approach -- A Comparison of Re-sampling Techniques for Pattern Classification in Imbalanced Data-Sets -- Classification of Heterogeneous Data Based on Data Type Impact on Similarity -- Clustering-based Fuzzy Finite State Machine for Human Activity Recognition -- Deep Online Hierarchical Unsupervised Learning for Pattern Mining from Utility Usage Data -- Online Object Trajectory Classification using FPGA-SoC Devices -- Key Frame Extraction and Classification of Human Activities using Motion Energy -- A Comprehensive Obstacle Avoidance System of Mobile Robots Using an Adaptive Threshold Clustering and the Morphin Algorithm -- Physarum Inspired Connectivity and Restoration for Wireless Sensor and Actor Networks -- Mining Unit Feedback to Explore Students' Learning Experiences -- Dimension Reduction Based on Geometric Reasoning for Reducts -- Anomaly Detection in Activities of Daily Living using One-Class Support Vector Machine -- Towards Active Muscle Pattern Analysis for Dynamic Hand Motions via SEMG -- A Novel Crossings-based Segmentation Approach for Gesture Recognition. |
| Record Nr. | UNINA-9910483383903321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Computational Intelligence Systems : Contributions Presented at the 16th UK Workshop on Computational Intelligence, September 7–9, 2016, Lancaster, UK / / edited by Plamen Angelov, Alexander Gegov, Chrisina Jayne, Qiang Shen
| Advances in Computational Intelligence Systems : Contributions Presented at the 16th UK Workshop on Computational Intelligence, September 7–9, 2016, Lancaster, UK / / edited by Plamen Angelov, Alexander Gegov, Chrisina Jayne, Qiang Shen |
| Edizione | [1st ed. 2017.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
| Descrizione fisica | 1 online resource (493 p.) |
| Disciplina | 620 |
| Collana | Advances in Intelligent Systems and Computing |
| Soggetto topico |
Computational intelligence
Optical data processing Automatic control Artificial intelligence Computational Intelligence Image Processing and Computer Vision Control and Systems Theory Artificial Intelligence |
| ISBN | 3-319-46562-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Search and Optimisation (SO) -- Modelling and Simulation (MS) -- Analysis and Detection (AD) -- Cognition and Control (CC) -- Learning and Evolution (LE) -- Clustering and Regression (CR). |
| Record Nr. | UNINA-9910254160803321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Flow modelling and control in pipeline systems : a formal systematic approach / / Sina Razvarz, Raheleh Jafari, Alexander Gegov
| Flow modelling and control in pipeline systems : a formal systematic approach / / Sina Razvarz, Raheleh Jafari, Alexander Gegov |
| Autore | Razvarz Sina |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (XIV, 198 p. 82 illus., 67 illus. in color.) |
| Disciplina | 621.8672 |
| Collana | Studies in systems, decision and control |
| Soggetto topico |
Pipelines - Hydrodynamics
Pipelines - Mathematical models |
| ISBN | 3-030-59246-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | The importance of pipeline transportation -- A review on different pipeline defect detection techniques -- Modelling of pipeline flow -- Theory and applications of Fuzzy logic Controller for Flowing Fluids -- Basic concepts of neural networks and deep learning and their applications for pipeline damage detection -- Leakage modelling for pipeline -- Blockage detection in Pipeline -- Leakage Detection in Pipeline Based on Second Order Extended Kalman Filter Observer -- Control of flow rate in heavy-oil pipelines using PD and PID controller. |
| Record Nr. | UNINA-9910484132903321 |
Razvarz Sina
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Rule Based Systems for Big Data : A Machine Learning Approach / / by Han Liu, Alexander Gegov, Mihaela Cocea
| Rule Based Systems for Big Data : A Machine Learning Approach / / by Han Liu, Alexander Gegov, Mihaela Cocea |
| Autore | Liu Han |
| Edizione | [1st ed. 2016.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 |
| Descrizione fisica | 1 online resource (127 p.) |
| Disciplina | 004.21 |
| Collana | Studies in Big Data |
| Soggetto topico |
Computational intelligence
Artificial intelligence Data mining Computational Intelligence Artificial Intelligence Data Mining and Knowledge Discovery |
| ISBN | 3-319-23696-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Theoretical Preliminaries -- Generation of Classification Rules -- Simplification of Classification Rules -- Representation of Classification Rules -- Ensemble Learning Approaches -- Interpretability Analysis. |
| Record Nr. | UNINA-9910741146803321 |
Liu Han
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||