top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Industrial Statistics [[electronic resource] ] : A Computer-Based Approach with Python / / by Ron S. Kenett, Shelemyahu Zacks, Peter Gedeck
Industrial Statistics [[electronic resource] ] : A Computer-Based Approach with Python / / by Ron S. Kenett, Shelemyahu Zacks, Peter Gedeck
Autore Kenett Ron S
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2023
Descrizione fisica 1 online resource (486 pages)
Disciplina 338.0021
Altri autori (Persone) ZacksShelemyahu
GedeckPeter
Collana Statistics for Industry, Technology, and Engineering
Soggetto topico Mathematical statistics—Data processing
Statistics
Statistics and Computing
Applied Statistics
Estadística industrial
Processament de dades
Python (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
ISBN 3-031-28482-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The Role of Statistical Methods in Modern Industry -- Basic Tools and Principles of Process Control -- Advanced Methods of Statistical Process Control -- Multivariate Statistical Process Control -- Classical Design and Analysis of Experiments -- Quality by Design -- Computer Experiments -- Cybermanufacturing and Digital Twins -- Reliability Analysis -- Bayesian Reliability Estimation and Prediction -- Sampling Plans for Batch and Sequential Inspection.
Record Nr. UNINA-9910731477803321
Kenett Ron S  
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modern Statistics [[electronic resource] ] : A Computer-Based Approach with Python / / by Ron S. Kenett, Shelemyahu Zacks, Peter Gedeck
Modern Statistics [[electronic resource] ] : A Computer-Based Approach with Python / / by Ron S. Kenett, Shelemyahu Zacks, Peter Gedeck
Autore Kenett Ron S.
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2022
Descrizione fisica 1 online resource (453 pages)
Disciplina 005.133
Collana Statistics for Industry, Technology, and Engineering
Soggetto topico Mathematical statistics - Data processing
Statistics
Artificial intelligence - Data processing
Industrial engineering
Production engineering
Statistics and Computing
Statistical Theory and Methods
Data Science
Industrial and Production Engineering
Estadística
Processament de dades
Python (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
ISBN 3-031-07566-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Analyzing Variability: Descriptive Statistics -- Probability Models and Distribution Functions -- Statistical Inference and Bootstrapping -- Variability in Several Dimensions and Regression Models -- Sampling for Estimation of Finite Population Quantities -- Time Series Analysis and Prediction -- Modern analytic methods: Part I -- Modern analytic methods: Part II -- Introduction to Python -- List of Python packages -- Code Repository and Solution Manual -- Bibliography -- Index.
Record Nr. UNISA-996490346003316
Kenett Ron S.  
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Modern Statistics : A Computer-Based Approach with Python / / by Ron S. Kenett, Shelemyahu Zacks, Peter Gedeck
Modern Statistics : A Computer-Based Approach with Python / / by Ron S. Kenett, Shelemyahu Zacks, Peter Gedeck
Autore Kenett Ron S.
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2022
Descrizione fisica 1 online resource (453 pages)
Disciplina 005.133
Collana Statistics for Industry, Technology, and Engineering
Soggetto topico Mathematical statistics - Data processing
Statistics
Artificial intelligence - Data processing
Industrial engineering
Production engineering
Statistics and Computing
Statistical Theory and Methods
Data Science
Industrial and Production Engineering
Estadística
Processament de dades
Python (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
ISBN 3-031-07566-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Analyzing Variability: Descriptive Statistics -- Probability Models and Distribution Functions -- Statistical Inference and Bootstrapping -- Variability in Several Dimensions and Regression Models -- Sampling for Estimation of Finite Population Quantities -- Time Series Analysis and Prediction -- Modern analytic methods: Part I -- Modern analytic methods: Part II -- Introduction to Python -- List of Python packages -- Code Repository and Solution Manual -- Bibliography -- Index.
Record Nr. UNINA-9910595043803321
Kenett Ron S.  
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistics for Data Science and Analytics
Statistics for Data Science and Analytics
Autore Bruce Peter C
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (381 pages)
Altri autori (Persone) GedeckPeter
DobbinsJanet
ISBN 1-394-25383-4
1-394-25382-6
1-394-25381-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Acknowledgments -- About the Companion Website -- Introduction -- Chapter 1 Statistics and Data Science -- 1.1 Big Data: Predicting Pregnancy -- 1.2 Phantom Protection from Vitamin E -- 1.3 Statistician, Heal Thyself -- 1.4 Identifying Terrorists in Airports -- 1.5 Looking Ahead -- 1.6 Big Data and Statisticians -- 1.6.1 Data Scientists -- Chapter 2 Designing and Carrying Out a Statistical Study -- 2.1 Statistical Science -- 2.2 Big Data -- 2.3 Data Science -- 2.4 Example: Hospital Errors -- 2.5 Experiment -- 2.6 Designing an Experiment -- 2.6.1 A/B Tests -- A Controlled Experiment for the Hospital Plans -- 2.6.2 Randomizing -- 2.6.3 Planning -- 2.6.4 Bias -- 2.6.4.1 Placebo -- 2.6.4.2 Blinding -- 2.6.4.3 Before‐after Pairing -- 2.7 The Data -- 2.7.1 Dataframe Format -- 2.8 Variables and Their Flavors -- 2.8.1 Numeric Variables -- 2.8.2 Categorical Variables -- 2.8.3 Binary Variables -- 2.8.4 Text Data -- 2.8.5 Random Variables -- 2.8.6 Simplified Columnar Format -- 2.9 Python: Data Structures and Operations -- 2.9.1 Primary Data Types -- 2.9.2 Comments -- 2.9.3 Variables -- 2.9.4 Operations on Data -- 2.9.4.1 Converting Data Types -- 2.9.5 Advanced Data Structures -- 2.9.5.1 Classes and Objects -- 2.9.5.2 Data Types and Their Declaration -- 2.10 Are We Sure We Made a Difference? -- 2.11 Is Chance Responsible? The Foundation of Hypothesis Testing -- 2.11.1 Looking at Just One Hospital -- 2.12 Probability -- 2.12.1 Interpreting Our Result -- 2.13 Significance or Alpha Level -- 2.13.1 Increasing the Sample Size -- 2.13.2 Simulating Probabilities with Random Numbers -- 2.14 Other Kinds of Studies -- 2.15 When to Use Hypothesis Tests -- 2.16 Experiments Falling Short of the Gold Standard -- 2.17 Summary -- 2.18 Python: Iterations and Conditional Execution -- 2.18.1 if Statements.
2.18.2 for Statements -- 2.18.3 while Statements -- 2.18.4 break and continue Statements -- 2.18.5 Example: Calculate Mean, Standard Deviation, Subsetting -- 2.18.6 List Comprehensions -- 2.19 Python: Numpy, scipy, and pandas-The Workhorses of Data Science -- 2.19.1 Numpy -- 2.19.2 Scipy -- 2.19.3 Pandas -- 2.19.3.1 Reading and Writing Data -- 2.19.3.2 Accessing Data -- 2.19.3.3 Manipulating Data -- 2.19.3.4 Iterating Over a DataFrame -- 2.19.3.5 And a Lot More -- Exercises -- Chapter 3 Exploring and Displaying the Data -- 3.1 Exploratory Data Analysis -- 3.2 What to Measure-Central Location -- 3.2.1 Mean -- 3.2.2 Median -- 3.2.3 Mode -- 3.2.4 Expected Value -- 3.2.5 Proportions for Binary Data -- 3.2.5.1 Percents -- 3.3 What to Measure-Variability -- 3.3.1 Range -- 3.3.2 Percentiles -- 3.3.3 Interquartile Range -- 3.3.4 Deviations and Residuals -- 3.3.5 Mean Absolute Deviation -- 3.3.6 Variance and Standard Deviation -- 3.3.6.1 Denominator of N or N-1? -- 3.3.7 Population Variance -- 3.3.8 Degrees of Freedom -- 3.4 What to Measure-Distance (Nearness) -- 3.5 Test Statistic -- 3.5.1 Test Statistic for this Study -- 3.6 Examining and Displaying the Data -- 3.6.1 Frequency Tables -- 3.6.2 Histograms -- 3.6.3 Bar Chart -- 3.6.4 Box Plots -- 3.6.5 Tails and Skew -- 3.6.6 Errors and Outliers Are Not the Same Thing! -- 3.7 Python: Exploratory Data Analysis/Data Visualization -- 3.7.1 Matplotlib -- 3.7.2 Data Visualization Using Pandas and Seaborn -- Exercises -- Chapter 4 Accounting for Chance-Statistical Inference -- 4.1 Avoid Being Fooled by Chance -- 4.2 The Null Hypothesis -- 4.3 Repeating the Experiment -- 4.3.1 Shuffling and Picking Numbers from a Hat or Box -- 4.3.2 How Many Reshuffles? -- 4.3.3 The t‐Test -- 4.3.4 Conclusion -- 4.4 Statistical Significance -- 4.4.1 Bottom Line -- 4.4.1.1 Statistical Significance as a Screening Device.
4.4.2 Torturing the Data -- 4.4.3 Practical Significance -- 4.5 Power -- 4.6 The Normal Distribution -- 4.6.1 The Exact Test -- 4.7 Summary -- 4.8 Python: Random Numbers -- 4.8.1 Generating Random Numbers Using the random Package -- 4.8.2 Random Numbers in numpy and scipy -- 4.8.3 Using Random Numbers in Other Packages -- 4.8.4 Example: Implement a Resampling Experiment -- 4.8.5 Write Functions for Code Reuse -- 4.8.6 Organizing Code into Modules -- Exercises -- Chapter 5 Probability -- 5.1 What Is Probability -- 5.2 Simple Probability -- 5.2.1 Venn Diagrams -- 5.3 Probability Distributions -- 5.3.1 Binomial Distribution -- 5.3.1.1 Example -- 5.4 From Binomial to Normal Distribution -- 5.4.1 Standardization (Normalization) -- 5.4.2 Standard Normal Distribution -- 5.4.2.1 z‐Tables -- 5.4.3 The 95 Percent Rule -- 5.5 Appendix: Binomial Formula and Normal Approximation -- 5.5.1 Normal Approximation -- 5.6 Python: Probability -- 5.6.1 Converting Counts to Probabilities -- 5.6.2 Probability Distributions in Python -- 5.6.3 Probability Distributions in random -- 5.6.4 Probability Distributions in the scipy Package -- 5.6.4.1 Continuous Distributions -- 5.6.4.2 Discrete Distributions -- Exercises -- Chapter 6 Categorical Variables -- 6.1 Two‐way Tables -- 6.2 Conditional Probability -- 6.2.1 From Numbers to Percentages to Conditional Probabilities -- 6.3 Bayesian Estimates -- 6.3.1 Let's Review the Different Probabilities -- 6.3.2 Bayesian Calculations -- 6.4 Independence -- 6.4.1 Chi‐square Test -- 6.4.1.1 Sensor Calibration -- 6.4.1.2 Standardizing Departure from Expected -- 6.5 Multiplication Rule -- 6.6 Simpson's Paradox -- 6.7 Python: Counting and Contingency Tables -- 6.7.1 Counting in Python -- 6.7.2 Counting in Pandas -- 6.7.3 Two‐way Tables Using Pandas -- 6.7.4 Chi‐square Test -- Exercises -- Chapter 7 Surveys and Sampling.
7.1 Literary Digest-Sampling Trumps "All Data" -- 7.2 Simple Random Samples -- 7.3 Margin of Error: Sampling Distribution for a Proportion -- 7.3.1 The Confidence Interval -- 7.3.2 A More Manageable Box: Sampling with Replacement -- 7.3.3 Summing Up -- 7.4 Sampling Distribution for a Mean -- 7.4.1 Simulating the Behavior of Samples from a Hypothetical Population -- 7.5 The Bootstrap -- 7.5.1 Resampling Procedure (Bootstrap) -- 7.6 Rationale for the Bootstrap -- 7.6.1 Let's Recap -- 7.6.2 Formula‐based Counterparts to Resampling -- 7.6.2.1 FORMULA: The Z‐interval -- 7.6.2.2 Proportions -- 7.6.3 For a Mean: T‐interval -- 7.6.4 Example-Manual Calculations -- 7.6.5 Example-Software -- 7.6.6 A Bit of History-1906 at Guinness Brewery -- 7.6.7 The Bootstrap Today -- 7.6.8 Central Limit Theorem -- 7.7 Standard Error -- 7.7.1 Standard Error via Formula -- 7.8 Other Sampling Methods -- 7.8.1 Stratified Sampling -- 7.8.2 Cluster Sampling -- 7.8.3 Systematic Sampling -- 7.8.4 Multistage Sampling -- 7.8.5 Convenience Sampling -- 7.8.6 Self‐selection -- 7.8.7 Nonresponse Bias -- 7.9 Absolute vs. Relative Sample Size -- 7.10 Python: Random Sampling Strategies -- 7.10.1 Implement Simple Random Sample (SRS) -- 7.10.2 Determining Confidence Intervals -- 7.10.3 Bootstrap Sampling to Determine Confidence Intervals for a Mean -- 7.10.4 Advanced Sampling Techniques -- 7.10.4.1 Stratified Sampling for Categorical Variables -- 7.10.4.2 Stratified Sampling of Continuous Variables -- Exercises -- Chapter 8 More than Two Samples or Categories -- 8.1 Count Data-R × C Tables -- 8.2 The Role of Experiments (Many Are Costly) -- 8.2.1 Example: Marriage Therapy -- 8.3 Chi‐Square Test -- 8.3.1 Alternate Option -- 8.3.2 Testing for the Role of Chance -- 8.3.3 Standardization to the Chi‐Square Statistic -- 8.3.4 Chi‐Square Example on the Computer -- 8.4 Single Sample-Goodness‐of‐Fit.
8.4.1 Resampling Procedure -- 8.5 Numeric Data: ANOVA -- 8.6 Components of Variance -- 8.6.1 From ANOVA to Regression -- 8.7 Factorial Design -- 8.7.1 Stratification and Blocking -- 8.7.2 Blocking -- 8.8 The Problem of Multiple Inference -- 8.9 Continuous Testing -- 8.9.1 Medicine -- 8.9.2 Business -- 8.10 Bandit Algorithms -- 8.10.1 Web Testing -- 8.11 Appendix: ANOVA, the Factor Diagram, and the F‐Statistic -- 8.11.1 Decomposition: The Factor Diagram -- 8.11.2 Constructing the ANOVA Table -- 8.11.3 Inference Using the ANOVA Table -- 8.11.4 The F‐Distribution -- 8.11.5 Different Sized Groups -- 8.11.5.1 Resampling Method -- 8.11.5.2 Formula Method -- 8.11.6 Caveats and Assumptions -- 8.12 More than One Factor or Variable-From ANOVA to Statistical Models -- 8.13 Python: Contingency Tables and Chi‐square Test -- 8.13.1 Example: Marriage Therapy -- 8.13.2 Example: Imanishi‐Kari Data -- 8.14 Python: ANOVA -- 8.14.1 Visual Comparison of Groups -- 8.14.2 ANOVA Using Resampling Test -- 8.14.3 ANOVA Using the F‐Statistic -- Exercises -- Chapter 9 Correlation -- 9.1 Example: Delta Wire -- 9.2 Example: Cotton Dust and Lung Disease -- 9.3 The Vector Product Sum Test -- 9.3.1 Example: Baseball Payroll -- 9.3.1.1 Resampling Procedure -- 9.4 Correlation Coefficient -- 9.4.1 Inference for the Correlation Coefficient-Resampling -- 9.4.1.1 Hypothesis Test-Resampling -- 9.4.1.2 Example: Baseball Again -- 9.4.1.3 Inference for the Correlation Coefficient: Formulas -- 9.5 Correlation is not Causation -- 9.5.1 A Lurking External Cause -- 9.5.2 Coincidence -- 9.6 Other Forms of Association -- 9.7 Python: Correlation -- 9.7.1 Vector Operations -- 9.7.2 Resampling Test for Vector Product Sums -- 9.7.3 Calculating Correlation Coefficient -- 9.7.4 Calculate Correlation with numpy, pandas -- 9.7.5 Hypothesis Tests for Correlation -- 9.7.6 Using the t Statistic.
9.7.7 Visualizing Correlation.
Record Nr. UNINA-9910880800503321
Bruce Peter C  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui