top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
Edizione [1st ed.]
Pubbl/distr/stampa Berlin ; ; Boston : , : De Gruyter, , [2025]
Descrizione fisica 1 online resource (X, 202 p.)
Collana De Gruyter Proceedings in Mathematics
Soggetto topico MATHEMATICS / Optimization
Soggetto non controllato Mathematical optimization, Machine learning, Nonlinear optimization, Discrete optimization, Physics informed learning
ISBN 3-11-137774-1
3-11-137677-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface -- Acknowledgment -- Contents -- A framework to solve inverse problems for parametric PDEs using adaptive finite elements and neural networks -- Generation of value function data for bilevel optimal control and application to hybrid electric vehicle -- Graph neural networks to predict strokes from blood flow simulations -- Capturing the macroscopic behavior of molecular dynamics with membership functions -- Adaptive gradient-enhanced Gaussian process surrogates for inverse problems -- Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems -- Constrained piecewise linear optimization by an active signature method -- Parallel trust-region approaches in neural network training -- Trustworthy optimization learning: a brief overview -- Compression-aware training of neural networks using Frank–Wolfe -- Approximation of generalized frequency response functions via vector fitting -- On the nonsmooth regularity condition LIKQ for different abs-normal representations -- Divergence of the ADAM algorithm with fixed-stepsize: a (very) simple example -- Index
Record Nr. UNISA-996657772003316
Berlin ; ; Boston : , : De Gruyter, , [2025]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
Edizione [1st ed.]
Pubbl/distr/stampa Berlin ; ; Boston : , : De Gruyter, , [2025]
Descrizione fisica 1 online resource (X, 202 p.)
Collana De Gruyter Proceedings in Mathematics
Soggetto topico MATHEMATICS / Optimization
Soggetto non controllato Mathematical optimization, Machine learning, Nonlinear optimization, Discrete optimization, Physics informed learning
ISBN 3-11-137774-1
3-11-137677-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface -- Acknowledgment -- Contents -- A framework to solve inverse problems for parametric PDEs using adaptive finite elements and neural networks -- Generation of value function data for bilevel optimal control and application to hybrid electric vehicle -- Graph neural networks to predict strokes from blood flow simulations -- Capturing the macroscopic behavior of molecular dynamics with membership functions -- Adaptive gradient-enhanced Gaussian process surrogates for inverse problems -- Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems -- Constrained piecewise linear optimization by an active signature method -- Parallel trust-region approaches in neural network training -- Trustworthy optimization learning: a brief overview -- Compression-aware training of neural networks using Frank–Wolfe -- Approximation of generalized frequency response functions via vector fitting -- On the nonsmooth regularity condition LIKQ for different abs-normal representations -- Divergence of the ADAM algorithm with fixed-stepsize: a (very) simple example -- Index
Record Nr. UNINA-9911024074903321
Berlin ; ; Boston : , : De Gruyter, , [2025]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling, simulation and optimization in the health- and energy-sector / / René Pinnau, Nicolas R. Gauger, Axel Klar, editors
Modeling, simulation and optimization in the health- and energy-sector / / René Pinnau, Nicolas R. Gauger, Axel Klar, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (153 pages)
Disciplina 511.8
Collana SEMA SIMAI Springer series
Soggetto topico Mathematical models
Mathematical optimization
Models matemàtics
Optimització matemàtica
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-99983-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996479367703316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Modeling, Simulation and Optimization in the Health- and Energy-Sector / / edited by René Pinnau, Nicolas R. Gauger, Axel Klar
Modeling, Simulation and Optimization in the Health- and Energy-Sector / / edited by René Pinnau, Nicolas R. Gauger, Axel Klar
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (153 pages)
Disciplina 511.8
362.1068
Collana ICIAM 2019 SEMA SIMAI Springer Series
Soggetto topico Mathematics
Mathematics - Data processing
Mathematical analysis
Mathematical optimization
Medical sciences
Applications of Mathematics
Computational Mathematics and Numerical Analysis
Analysis
Optimization
Health Sciences
ISBN 3-030-99983-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I Prognostic MR Thermometry for Thermal Ablation of Liver Tumours -- 1 Sebastian Blauth et al., Mathematical Modeling and Simulation of Laser-Induced Thermotherapy for the Treatment of Liver Tumors -- 2 Matthias Andres and René Pinnau, The Cattaneo Model for Laser-Induced Thermotherapy: Identification of the Blood-Perfusion Rate -- 3 Kevin Tolle and Nicole Marheineke, On Online Parameter Identification in Laser-Induced Thermotherapy -- Part II Energy-efficient High Temperature Processes via Shape Optimisation -- 4 Robert Feßler at al., Feasibility Study on Simulating a 3D Furnace Including the Effects of Reactions and Vaporization -- 5 Thomas Marx et al., Shape Optimization for the SP1–Model for Convective Radiative Heat Transfer- 6 Nicolas Dietrich et al., Diffusive Radiation Models for Optimal Shape Design in Phosphate Production -- 7 Ruben Sanchez at al., Adjoint-based sensitivity analysis in high-temperature fluid flows with participating media.
Record Nr. UNINA-9910574856003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui