top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
An introduction to transport phenomena in materials engineering / / David R. Gaskell
An introduction to transport phenomena in materials engineering / / David R. Gaskell
Autore Gaskell David R.
Edizione [Second edition.]
Pubbl/distr/stampa New Jersey : , : Momentum Press, LLC, , 2012
Descrizione fisica 1 online resource (686 p.)
Disciplina 660.28423
Soggetto topico Mass transfer
Materials - Fluid dynamics
Soggetto genere / forma Electronic books.
ISBN 1-283-89611-7
1-60650-357-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of symbols --
1. Engineering units and pressure in static fluids -- 1.1 Origins of engineering units -- 1.2 Concept of pressure -- 1.3 Measurement of pressure -- 1.4 Pressure in incompressible fluids -- 1.5 Buoyancy -- 1.6 Summary -- Problems --
2. Momentum transport and laminar flow of Newtonian fluids -- 2.1 Introduction -- 2.2 Newton's lax of viscosity -- 2.3 Conservation of momentum in steady-state flow -- 2.4 Fluid flow between two flat parallel plates -- 2.5 Fluid flow down in inclined plane -- 2.6 Fluid flow in a vertical cylindrical tube -- 2.7 Capillary flowmeter -- 2.8 Fluid flow in an annulus -- 2.9 Mean residence time -- 2.10 Calculation of viscosity from the kinetic theory of gases -- 2.11 Viscosities of liquid metals -- 2.12 Summary -- Problems --
3. Equations of continuity and conservation of momentum and fluid flow past submerged objects -- 3.1 Introduction -- 3.2 Equation of continuity -- 3.3 Conservation of momentum -- 3.4 Navier-Stokes equation for fluids of constant density and viscosity -- 3.5 Fluid flow over a horizontal flat plane -- 3.6 Approximate integral method in obtaining boundary layer thickness -- 3.7 Creeping flow past a sphere -- 3.8 Summary -- Problems --
4. Turbulent flow -- 4.1 Introduction -- 4.2 Graphical representation of fluid flow -- 4.3 Friction factor and turbulent flow in cylindrical pipes -- 4.4 Flow over a flat plate -- 4.5 Flow past a submerged sphere -- 4.6 Flow past a submerged cylinder -- 4.7 Flow through packed beds -- 4.8 Fluidized beds -- 4.9 Summary -- Problems --
5. Mechanical energy balance and its application to fluid flow -- 5.1 Introduction -- 5.2 Bernoulli's equation -- 5.3 Friction loss, Ef -- 5.4 Influence of bends, fittings, and changes in the pipe radius -- 5.5 Concept of head -- 5.6 Fluid flow in an open channel -- 5.7 Drainage from a vessel -- 5.8 Emptying a vessel by discharge through an orifice -- 5.9 Drainage of a vessel using a drainage tube -- 5.10 Emptying a vessel by drainage through a drainage tube -- 5.11 Bernoulli equation for flow of compressible fluids -- 5.12 Pilot tube -- 5.13 Orifice plate -- 5.14 Summary -- Problems --
6. Transport of heat by conduction -- 6.1 Introduction -- 6.2 Fourier's law and Newton's law -- 6.3 Conduction -- 6.4 Conduction in heat sources -- 6.5 Thermal conductivity and the kinetic theory of gases -- 6.6 General heat conduction equation -- 6.7 Conduction of heat at steady state in two dimensions -- 6.8 Summary -- Problems --
7. Transport of heat by convection -- 7.1 Introduction -- 7.2 Heat transfer by forced convection from a horizontal flat plate at a uniform constant temperature -- 7.3 Heat transfer from a horizontal flat plate with uniform heat flux along the plate -- 7.4 Heat transfer during fluid flow in cylindrical pipes -- 7.5 Energy balance in heat transfer by convection between a cylindrical pipe and a flowing fluid -- 7.6 Heat transfer by forced convection from horizontal cylinders -- 7.7 Heat transfer by forced convection from a sphere -- 7.8 General energy equation -- 7.9 Heat transfer from a vertical plate by natural convection -- 7.10 Heat transfer from cylinders by natural convection -- 7.11 Summary -- Problems --
8. Transient heat flow -- 8.1 Introduction -- 8.2 Lumped capacitance method; Newtonian cooling -- 8.3 Non-Newtonian cooling in semi-infinite systems -- 8.4 Non-Newtonian cooling in a one-dimensional finite systems -- 8.5 Non-Newtonian cooling in a two-dimensional finite systems -- 8.6 Solidification of metal castings -- 8.7 Summary -- Problems --
9. Heat transport by thermal radiation -- 9.1 Introduction -- 9.2 Intensity and emissive power -- 9.3 Blackbody radiation -- 9.4 Emissivity -- 9.5 Absorptivity, reflectivity, and transmissivity -- 9.6 Kirchhoff's law and the Hohlraum -- 9.7 Radiation exchange between surfaces -- 9.8 Radiation exchange between blackbodies -- 9.9 Radiation exchange between diffuse-gray surfaces -- 9.10 Electric analogy -- 9.11 Radiation shields -- 9.12 Reradiating surface -- 9.13 Heat transfer from a surface by convection and radiation -- 9.14 Summary -- Problems --
10. Mass transport by diffusion in the solid state -- 10.1 Introduction -- 10.2 Atomic diffusion as a random-walk process -- 10.3 Fick 's first law of diffusion -- 10.4 One-dimensional non-steady-state diffusion in a solid; Fick's second law of diffusion -- 10.5 Infinite diffusion couple -- 10.6 One-dimensional diffusion in a semi-infinite system involving a change of phase -- 10.7 Steady-state diffusion through a composite wall -- 10.8 Diffusion in substitutional solid solutions -- 10.9 Darken's analysis -- 10.10 Self-diffusion coefficient -- 10.11 Measurement of the interdifussion coefficient: Boltzmann-Matano analysis -- 10.12 Influence of temperature on the diffusion coefficient -- 10.13 Summary -- Problems --
11. Mass transport in fluids -- 11.1 Introduction -- 11.2 Mass and molar fluxes in a fluid -- 11.3 Equations of diffusion with convection in a binary mixture A-B -- 11.4 One-dimensional transport in a binary mixture of ideal gases -- 11.5 Equimolar counterdiffusion -- 11.6 One-dimensional steady-state diffusion of gas A through stationary gas B -- 11.7 Sublimation of a sphere into a stationary gas -- 11.8 Film model -- 11.9 Catalytic surface reactions -- 11.10 Diffusion and chemical reaction in stagnant film -- 11.11 Mass transfer at large fluxes and large concentrations -- 11.12 Influence of mass transport on heat transfer in stagnant film -- 11.13 Diffusion into a falling film of liquid -- 11.14 Diffusion and the kinetic theory of gases -- 11.15 Mass transfer coefficient and concentration boundary layer on a flat plate -- 11.16 Approximate integral method -- 11.17 Mass transfer by free convection -- 11.18 Simultaneous heat and mass transfer: evaporate cooling -- 11.19 Chemical reaction and mass transfer: mixed control -- 11.20 Dissolution of pure metal A in liquid B: mixed control -- 11.21 Summary -- Problems --
12. Condensation and boiling -- 12.1 Introduction -- 12.2 Dimensionless parameters in boiling and condensation -- 12.3 Modes of boiling -- 12.4 Pool boiling correlations -- 12.5 Summary -- Problems --
Appendix A. Elementary and derived SI units and symbols -- Appendix B. Prefixes and symbols for multiples and submultiples of SI units -- Appendix C. Conversion from British and U.S. units to SI units -- Appendix D. Properties of solid metals -- Appendix E. Properties of nonmetallic solids -- Appendix F. Properties of gases at 1 Atm pressure -- Appendix G. Properties of saturated liquids -- Appendix H. Properties of liquid metals -- Recommended readings -- Answers to problems -- Index.
Record Nr. UNINA-9910462542503321
Gaskell David R.  
New Jersey : , : Momentum Press, LLC, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
An introduction to transport phenomena in materials engineering / / David R. Gaskell
An introduction to transport phenomena in materials engineering / / David R. Gaskell
Autore Gaskell David R.
Edizione [Second edition.]
Pubbl/distr/stampa New Jersey : , : Momentum Press, LLC, , 2012
Descrizione fisica 1 online resource (686 p.)
Disciplina 660.28423
Soggetto topico Mass transfer
Materials - Fluid dynamics
ISBN 1-283-89611-7
1-60650-357-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of symbols --
1. Engineering units and pressure in static fluids -- 1.1 Origins of engineering units -- 1.2 Concept of pressure -- 1.3 Measurement of pressure -- 1.4 Pressure in incompressible fluids -- 1.5 Buoyancy -- 1.6 Summary -- Problems --
2. Momentum transport and laminar flow of Newtonian fluids -- 2.1 Introduction -- 2.2 Newton's lax of viscosity -- 2.3 Conservation of momentum in steady-state flow -- 2.4 Fluid flow between two flat parallel plates -- 2.5 Fluid flow down in inclined plane -- 2.6 Fluid flow in a vertical cylindrical tube -- 2.7 Capillary flowmeter -- 2.8 Fluid flow in an annulus -- 2.9 Mean residence time -- 2.10 Calculation of viscosity from the kinetic theory of gases -- 2.11 Viscosities of liquid metals -- 2.12 Summary -- Problems --
3. Equations of continuity and conservation of momentum and fluid flow past submerged objects -- 3.1 Introduction -- 3.2 Equation of continuity -- 3.3 Conservation of momentum -- 3.4 Navier-Stokes equation for fluids of constant density and viscosity -- 3.5 Fluid flow over a horizontal flat plane -- 3.6 Approximate integral method in obtaining boundary layer thickness -- 3.7 Creeping flow past a sphere -- 3.8 Summary -- Problems --
4. Turbulent flow -- 4.1 Introduction -- 4.2 Graphical representation of fluid flow -- 4.3 Friction factor and turbulent flow in cylindrical pipes -- 4.4 Flow over a flat plate -- 4.5 Flow past a submerged sphere -- 4.6 Flow past a submerged cylinder -- 4.7 Flow through packed beds -- 4.8 Fluidized beds -- 4.9 Summary -- Problems --
5. Mechanical energy balance and its application to fluid flow -- 5.1 Introduction -- 5.2 Bernoulli's equation -- 5.3 Friction loss, Ef -- 5.4 Influence of bends, fittings, and changes in the pipe radius -- 5.5 Concept of head -- 5.6 Fluid flow in an open channel -- 5.7 Drainage from a vessel -- 5.8 Emptying a vessel by discharge through an orifice -- 5.9 Drainage of a vessel using a drainage tube -- 5.10 Emptying a vessel by drainage through a drainage tube -- 5.11 Bernoulli equation for flow of compressible fluids -- 5.12 Pilot tube -- 5.13 Orifice plate -- 5.14 Summary -- Problems --
6. Transport of heat by conduction -- 6.1 Introduction -- 6.2 Fourier's law and Newton's law -- 6.3 Conduction -- 6.4 Conduction in heat sources -- 6.5 Thermal conductivity and the kinetic theory of gases -- 6.6 General heat conduction equation -- 6.7 Conduction of heat at steady state in two dimensions -- 6.8 Summary -- Problems --
7. Transport of heat by convection -- 7.1 Introduction -- 7.2 Heat transfer by forced convection from a horizontal flat plate at a uniform constant temperature -- 7.3 Heat transfer from a horizontal flat plate with uniform heat flux along the plate -- 7.4 Heat transfer during fluid flow in cylindrical pipes -- 7.5 Energy balance in heat transfer by convection between a cylindrical pipe and a flowing fluid -- 7.6 Heat transfer by forced convection from horizontal cylinders -- 7.7 Heat transfer by forced convection from a sphere -- 7.8 General energy equation -- 7.9 Heat transfer from a vertical plate by natural convection -- 7.10 Heat transfer from cylinders by natural convection -- 7.11 Summary -- Problems --
8. Transient heat flow -- 8.1 Introduction -- 8.2 Lumped capacitance method; Newtonian cooling -- 8.3 Non-Newtonian cooling in semi-infinite systems -- 8.4 Non-Newtonian cooling in a one-dimensional finite systems -- 8.5 Non-Newtonian cooling in a two-dimensional finite systems -- 8.6 Solidification of metal castings -- 8.7 Summary -- Problems --
9. Heat transport by thermal radiation -- 9.1 Introduction -- 9.2 Intensity and emissive power -- 9.3 Blackbody radiation -- 9.4 Emissivity -- 9.5 Absorptivity, reflectivity, and transmissivity -- 9.6 Kirchhoff's law and the Hohlraum -- 9.7 Radiation exchange between surfaces -- 9.8 Radiation exchange between blackbodies -- 9.9 Radiation exchange between diffuse-gray surfaces -- 9.10 Electric analogy -- 9.11 Radiation shields -- 9.12 Reradiating surface -- 9.13 Heat transfer from a surface by convection and radiation -- 9.14 Summary -- Problems --
10. Mass transport by diffusion in the solid state -- 10.1 Introduction -- 10.2 Atomic diffusion as a random-walk process -- 10.3 Fick 's first law of diffusion -- 10.4 One-dimensional non-steady-state diffusion in a solid; Fick's second law of diffusion -- 10.5 Infinite diffusion couple -- 10.6 One-dimensional diffusion in a semi-infinite system involving a change of phase -- 10.7 Steady-state diffusion through a composite wall -- 10.8 Diffusion in substitutional solid solutions -- 10.9 Darken's analysis -- 10.10 Self-diffusion coefficient -- 10.11 Measurement of the interdifussion coefficient: Boltzmann-Matano analysis -- 10.12 Influence of temperature on the diffusion coefficient -- 10.13 Summary -- Problems --
11. Mass transport in fluids -- 11.1 Introduction -- 11.2 Mass and molar fluxes in a fluid -- 11.3 Equations of diffusion with convection in a binary mixture A-B -- 11.4 One-dimensional transport in a binary mixture of ideal gases -- 11.5 Equimolar counterdiffusion -- 11.6 One-dimensional steady-state diffusion of gas A through stationary gas B -- 11.7 Sublimation of a sphere into a stationary gas -- 11.8 Film model -- 11.9 Catalytic surface reactions -- 11.10 Diffusion and chemical reaction in stagnant film -- 11.11 Mass transfer at large fluxes and large concentrations -- 11.12 Influence of mass transport on heat transfer in stagnant film -- 11.13 Diffusion into a falling film of liquid -- 11.14 Diffusion and the kinetic theory of gases -- 11.15 Mass transfer coefficient and concentration boundary layer on a flat plate -- 11.16 Approximate integral method -- 11.17 Mass transfer by free convection -- 11.18 Simultaneous heat and mass transfer: evaporate cooling -- 11.19 Chemical reaction and mass transfer: mixed control -- 11.20 Dissolution of pure metal A in liquid B: mixed control -- 11.21 Summary -- Problems --
12. Condensation and boiling -- 12.1 Introduction -- 12.2 Dimensionless parameters in boiling and condensation -- 12.3 Modes of boiling -- 12.4 Pool boiling correlations -- 12.5 Summary -- Problems --
Appendix A. Elementary and derived SI units and symbols -- Appendix B. Prefixes and symbols for multiples and submultiples of SI units -- Appendix C. Conversion from British and U.S. units to SI units -- Appendix D. Properties of solid metals -- Appendix E. Properties of nonmetallic solids -- Appendix F. Properties of gases at 1 Atm pressure -- Appendix G. Properties of saturated liquids -- Appendix H. Properties of liquid metals -- Recommended readings -- Answers to problems -- Index.
Record Nr. UNINA-9910785988303321
Gaskell David R.  
New Jersey : , : Momentum Press, LLC, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
An introduction to transport phenomena in materials engineering / / David R. Gaskell
An introduction to transport phenomena in materials engineering / / David R. Gaskell
Autore Gaskell David R.
Edizione [Second edition.]
Pubbl/distr/stampa New Jersey : , : Momentum Press, LLC, , 2012
Descrizione fisica 1 online resource (686 p.)
Disciplina 660.28423
Soggetto topico Mass transfer
Materials - Fluid dynamics
ISBN 1-283-89611-7
1-60650-357-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of symbols --
1. Engineering units and pressure in static fluids -- 1.1 Origins of engineering units -- 1.2 Concept of pressure -- 1.3 Measurement of pressure -- 1.4 Pressure in incompressible fluids -- 1.5 Buoyancy -- 1.6 Summary -- Problems --
2. Momentum transport and laminar flow of Newtonian fluids -- 2.1 Introduction -- 2.2 Newton's lax of viscosity -- 2.3 Conservation of momentum in steady-state flow -- 2.4 Fluid flow between two flat parallel plates -- 2.5 Fluid flow down in inclined plane -- 2.6 Fluid flow in a vertical cylindrical tube -- 2.7 Capillary flowmeter -- 2.8 Fluid flow in an annulus -- 2.9 Mean residence time -- 2.10 Calculation of viscosity from the kinetic theory of gases -- 2.11 Viscosities of liquid metals -- 2.12 Summary -- Problems --
3. Equations of continuity and conservation of momentum and fluid flow past submerged objects -- 3.1 Introduction -- 3.2 Equation of continuity -- 3.3 Conservation of momentum -- 3.4 Navier-Stokes equation for fluids of constant density and viscosity -- 3.5 Fluid flow over a horizontal flat plane -- 3.6 Approximate integral method in obtaining boundary layer thickness -- 3.7 Creeping flow past a sphere -- 3.8 Summary -- Problems --
4. Turbulent flow -- 4.1 Introduction -- 4.2 Graphical representation of fluid flow -- 4.3 Friction factor and turbulent flow in cylindrical pipes -- 4.4 Flow over a flat plate -- 4.5 Flow past a submerged sphere -- 4.6 Flow past a submerged cylinder -- 4.7 Flow through packed beds -- 4.8 Fluidized beds -- 4.9 Summary -- Problems --
5. Mechanical energy balance and its application to fluid flow -- 5.1 Introduction -- 5.2 Bernoulli's equation -- 5.3 Friction loss, Ef -- 5.4 Influence of bends, fittings, and changes in the pipe radius -- 5.5 Concept of head -- 5.6 Fluid flow in an open channel -- 5.7 Drainage from a vessel -- 5.8 Emptying a vessel by discharge through an orifice -- 5.9 Drainage of a vessel using a drainage tube -- 5.10 Emptying a vessel by drainage through a drainage tube -- 5.11 Bernoulli equation for flow of compressible fluids -- 5.12 Pilot tube -- 5.13 Orifice plate -- 5.14 Summary -- Problems --
6. Transport of heat by conduction -- 6.1 Introduction -- 6.2 Fourier's law and Newton's law -- 6.3 Conduction -- 6.4 Conduction in heat sources -- 6.5 Thermal conductivity and the kinetic theory of gases -- 6.6 General heat conduction equation -- 6.7 Conduction of heat at steady state in two dimensions -- 6.8 Summary -- Problems --
7. Transport of heat by convection -- 7.1 Introduction -- 7.2 Heat transfer by forced convection from a horizontal flat plate at a uniform constant temperature -- 7.3 Heat transfer from a horizontal flat plate with uniform heat flux along the plate -- 7.4 Heat transfer during fluid flow in cylindrical pipes -- 7.5 Energy balance in heat transfer by convection between a cylindrical pipe and a flowing fluid -- 7.6 Heat transfer by forced convection from horizontal cylinders -- 7.7 Heat transfer by forced convection from a sphere -- 7.8 General energy equation -- 7.9 Heat transfer from a vertical plate by natural convection -- 7.10 Heat transfer from cylinders by natural convection -- 7.11 Summary -- Problems --
8. Transient heat flow -- 8.1 Introduction -- 8.2 Lumped capacitance method; Newtonian cooling -- 8.3 Non-Newtonian cooling in semi-infinite systems -- 8.4 Non-Newtonian cooling in a one-dimensional finite systems -- 8.5 Non-Newtonian cooling in a two-dimensional finite systems -- 8.6 Solidification of metal castings -- 8.7 Summary -- Problems --
9. Heat transport by thermal radiation -- 9.1 Introduction -- 9.2 Intensity and emissive power -- 9.3 Blackbody radiation -- 9.4 Emissivity -- 9.5 Absorptivity, reflectivity, and transmissivity -- 9.6 Kirchhoff's law and the Hohlraum -- 9.7 Radiation exchange between surfaces -- 9.8 Radiation exchange between blackbodies -- 9.9 Radiation exchange between diffuse-gray surfaces -- 9.10 Electric analogy -- 9.11 Radiation shields -- 9.12 Reradiating surface -- 9.13 Heat transfer from a surface by convection and radiation -- 9.14 Summary -- Problems --
10. Mass transport by diffusion in the solid state -- 10.1 Introduction -- 10.2 Atomic diffusion as a random-walk process -- 10.3 Fick 's first law of diffusion -- 10.4 One-dimensional non-steady-state diffusion in a solid; Fick's second law of diffusion -- 10.5 Infinite diffusion couple -- 10.6 One-dimensional diffusion in a semi-infinite system involving a change of phase -- 10.7 Steady-state diffusion through a composite wall -- 10.8 Diffusion in substitutional solid solutions -- 10.9 Darken's analysis -- 10.10 Self-diffusion coefficient -- 10.11 Measurement of the interdifussion coefficient: Boltzmann-Matano analysis -- 10.12 Influence of temperature on the diffusion coefficient -- 10.13 Summary -- Problems --
11. Mass transport in fluids -- 11.1 Introduction -- 11.2 Mass and molar fluxes in a fluid -- 11.3 Equations of diffusion with convection in a binary mixture A-B -- 11.4 One-dimensional transport in a binary mixture of ideal gases -- 11.5 Equimolar counterdiffusion -- 11.6 One-dimensional steady-state diffusion of gas A through stationary gas B -- 11.7 Sublimation of a sphere into a stationary gas -- 11.8 Film model -- 11.9 Catalytic surface reactions -- 11.10 Diffusion and chemical reaction in stagnant film -- 11.11 Mass transfer at large fluxes and large concentrations -- 11.12 Influence of mass transport on heat transfer in stagnant film -- 11.13 Diffusion into a falling film of liquid -- 11.14 Diffusion and the kinetic theory of gases -- 11.15 Mass transfer coefficient and concentration boundary layer on a flat plate -- 11.16 Approximate integral method -- 11.17 Mass transfer by free convection -- 11.18 Simultaneous heat and mass transfer: evaporate cooling -- 11.19 Chemical reaction and mass transfer: mixed control -- 11.20 Dissolution of pure metal A in liquid B: mixed control -- 11.21 Summary -- Problems --
12. Condensation and boiling -- 12.1 Introduction -- 12.2 Dimensionless parameters in boiling and condensation -- 12.3 Modes of boiling -- 12.4 Pool boiling correlations -- 12.5 Summary -- Problems --
Appendix A. Elementary and derived SI units and symbols -- Appendix B. Prefixes and symbols for multiples and submultiples of SI units -- Appendix C. Conversion from British and U.S. units to SI units -- Appendix D. Properties of solid metals -- Appendix E. Properties of nonmetallic solids -- Appendix F. Properties of gases at 1 Atm pressure -- Appendix G. Properties of saturated liquids -- Appendix H. Properties of liquid metals -- Recommended readings -- Answers to problems -- Index.
Record Nr. UNINA-9910820990903321
Gaskell David R.  
New Jersey : , : Momentum Press, LLC, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui