Ergodic Optimization in the Expanding Case : Concepts, Tools and Applications / Eduardo Garibaldi
| Ergodic Optimization in the Expanding Case : Concepts, Tools and Applications / Eduardo Garibaldi |
| Autore | Garibaldi, Eduardo |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | viii, 71 p. ; 24 cm |
| Soggetto topico |
37-XX - Dynamical systems and ergodic theory [MSC 2020]
37A30 - Ergodic theorems, spectral theory, Markov operators [MSC 2020] 37J40 - Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020] 37K55 - Perturbations, KAM for infinite-dimensional Hamiltonian and Lagrangian systems [MSC 2020] 37Kxx - Dynamical system aspects of infinite-dimensional Hamiltonian and Lagrangian systems [MSC 2020] 70H20 - Hamilton-Jacobi equations in mechanics [MSC 2020] 35F21 - Hamilton-Jacobi equations [MSC 2020] 37N40 - Dynamical systems in optimization and economics [MSC 2020] 70G75 - Variational methods for problems in mechanics [MSC 2020] |
| Soggetto non controllato |
Aubry set
Ergodic optimization Mañé potential Sub-actions Thermodynamics Weak KAM theory |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0124096 |
Garibaldi, Eduardo
|
||
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Ergodic Optimization in the Expanding Case : Concepts, Tools and Applications / Eduardo Garibaldi
| Ergodic Optimization in the Expanding Case : Concepts, Tools and Applications / Eduardo Garibaldi |
| Autore | Garibaldi, Eduardo |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | viii, 71 p. ; 24 cm |
| Soggetto topico |
35F21 - Hamilton-Jacobi equations [MSC 2020]
37-XX - Dynamical systems and ergodic theory [MSC 2020] 37A30 - Ergodic theorems, spectral theory, Markov operators [MSC 2020] 37J40 - Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020] 37K55 - Perturbations, KAM for infinite-dimensional Hamiltonian and Lagrangian systems [MSC 2020] 37Kxx - Dynamical system aspects of infinite-dimensional Hamiltonian and Lagrangian systems [MSC 2020] 37N40 - Dynamical systems in optimization and economics [MSC 2020] 70G75 - Variational methods for problems in mechanics [MSC 2020] 70H20 - Hamilton-Jacobi equations in mechanics [MSC 2020] |
| Soggetto non controllato |
Aubry set
Ergodic optimization Mañé potential Sub-actions Thermodynamics Weak KAM theory |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00124096 |
Garibaldi, Eduardo
|
||
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Ergodic Optimization in the Expanding Case : Concepts, Tools and Applications / Eduardo Garibaldi
| Ergodic Optimization in the Expanding Case : Concepts, Tools and Applications / Eduardo Garibaldi |
| Autore | Garibaldi, Eduardo |
| Edizione | [Cham : Springer, 2017] |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
37-XX - Dynamical systems and ergodic theory [MSC 2020]
37A30 - Ergodic theorems, spectral theory, Markov operators [MSC 2020] 37J40 - Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020] 37K55 - Perturbations, KAM for infinite-dimensional Hamiltonian and Lagrangian systems [MSC 2020] 37Kxx - Dynamical system aspects of infinite-dimensional Hamiltonian and Lagrangian systems [MSC 2020] 70H20 - Hamilton-Jacobi equations in mechanics [MSC 2020] 35F21 - Hamilton-Jacobi equations [MSC 2020] 37N40 - Dynamical systems in optimization and economics [MSC 2020] 70G75 - Variational methods for problems in mechanics [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0124096 |
Garibaldi, Eduardo
|
||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||