Advances in reliability, failure and risk analysis / / edited by Harish Garg |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore Pte Ltd., , [2023] |
Descrizione fisica | 1 online resource (XII, 409 p. 160 illus., 119 illus. in color.) |
Disciplina | 620.00452 |
Collana | Industrial and Applied Mathematics |
Soggetto topico |
Reliability (Engineering) - Statistical methods
Risk assessment - Statistical methods Avaluació del risc Fiabilitat (Enginyeria) Estadística matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-19-9909-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Degradation and Failure Mechanisms of Complex Systems: Principles -- Simplified Approach to Analyse Fuzzy Reliability of a Repairable System -- Fault-Tolerant and Resilient Neural Control for Discrete-Time Nonlinear Systems -- Bayesian Reliability Analysis of the Topp–Leone Model under Different Loss Functions -- Availability Analysis of Non-Markovian Models with Rejuvenation and Check Pointing -- Reliability Metrics of Textile Confection Plant Using Copula Linguistic -- An Application of Soft Computing in Oil Condition Monitoring -- A Multi-Parameter Occupational Safety Risk Assessment Model for Chemicals in the University Laboratories by an MCDM-Sorting Method -- Failure Mode and Effect Analysis (FMEA) for Safety-Critical Systems in the Context of Industry 4.0 -- Optimization of Redundancy Allocation Problem Using QPSO Algorithm under Uncertain Environment -- Resilience: Enterprise Sustainability Based to Risk Management -- Reliability Analysis of Process Systems Using Intuitionistic Fuzzy Set Theory -- Smart Systems Risk Management in IoT-Based Supply Chain -- Risk and Reliability Analysis in the Era of Digital Transformation -- Distributed System Reliability Analysis with Two Coverage Factors: A Copula Approach -- Qualitative Analysis Method for Evaluation of Risk and Failures in Wind Power Plants: A Case Study of Turkey -- Some Discrete Parametric Markov-Chain System Models to Analyze Reliability -- Repair and Maintenance Management System of Food Processing Equipment: A Systematic Literature Review -- Reliability, Availability, Maintainability and Dependability of a Serial Rice Mill Plant with the Incorporation of Coverage Factor. |
Record Nr. | UNINA-9910686470203321 |
Singapore : , : Springer Nature Singapore Pte Ltd., , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Proceedings of Sixth International Conference on Soft Computing for Problem Solving : SocProS 2016, Volume 2 / / edited by Kusum Deep, Jagdish Chand Bansal, Kedar Nath Das, Arvind Kumar Lal, Harish Garg, Atulya K. Nagar, Millie Pant |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (X, 406 p. 172 illus.) |
Disciplina | 006.3 |
Collana | Advances in Intelligent Systems and Computing |
Soggetto topico |
Computational intelligence
Signal processing Image processing Speech processing systems Artificial intelligence Computational Intelligence Signal, Image and Speech Processing Artificial Intelligence |
ISBN | 981-10-3325-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Spammer Classification using Ensemble Methods over Content-Based Features -- A Modified BPDHE Enhancement Algorithm for Low Resolution Images -- Opposition aided Artificial Bee Colony Algorithm for Digital IIR Filter Design -- Cost Optimization of 2-Way Ribbed Slab Using Hybrid Self Organizing Migrating Algorithm -- A Complete Ontological survey of Cloud Forensic in the area of Cloud Computing -- Optimal Path Determination in a Survivable Virtual Topology of an Optical Network using Ant Colony Optimization -- Parameter Optimization for H.265/HEVC encoder using NSGA II -- PSO Based Context Sensitive Thresholding Technique for Automatic Image Segmentation -- Script Identification from Offline Handwritten Characters using Combination of Features -- Multi-Parameter Retrieval in a Porous Fin using Bi-nary-Coded Genetic Algorithm -- Effectiveness of Constrained Laplacian Biogeography Based Optimization for solving Structural Engineering Design Problems -- Soft Computing Based Software Testing – A Concise Travelogue -- Detection and Mitigation of spoofing attacks by using SDN in LAN -- Landslide Early Warning System Development using Statistical Analysis ofSensors’ Data at Tangni Landslide, Uttarakhand, India -- Wearable Haptic Based Pattern Feedback Sleeve System -- Job Scheduling algorithm in cloud environment considering the priority and cost of job -- Automatic Location of Blood Vessel Bifurcations in Digital Eye Fundus Images -- Recommendation System with Sentiment Analysis as Feedback Component -- A second order non-uniform mesh discretization for the numerical treatment of singular two-point boundary value problems with integral forcing function. |
Record Nr. | UNINA-9910254326503321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Proceedings of Sixth International Conference on Soft Computing for Problem Solving : SocProS 2016, Volume 1 / / edited by Kusum Deep, Jagdish Chand Bansal, Kedar Nath Das, Arvind Kumar Lal, Harish Garg, Atulya K. Nagar, Millie Pant |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (X, 362 p. 138 illus.) |
Disciplina | 620 |
Collana | Advances in Intelligent Systems and Computing |
Soggetto topico |
Computational intelligence
Signal processing Image processing Speech processing systems Artificial intelligence Computational Intelligence Signal, Image and Speech Processing Artificial Intelligence |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Adaptive Scale Factor based Differential Evolution Algorithm -- Adaptive Balance Factor in Particle Swarm Optimization -- Community detection in complex networks: a novel approach based on ant lion optimizer -- Hybrid SOMA: A Tool for Optimizing TMD Parameters -- Fast Convergent Spider Monkey Optimization Algorithm -- Bi-level problem and SMD Assessment Delinquent for Single Impartial Bi-level Optimization -- An Adaptive Firefly Algorithm for Load Balancing in Cloud Computing -- Review on Inertia Weight Strategies for Particle Swarm Optimization -- Hybridized Gravitational Search Algorithms with Real Coded Genetic Algorithms for Integer and Mixed Integer Optimization Problems -- Spider Monkey Optimization Algorithm based on Metropolis principle -- An Analysis of modeling and optimization production cost through fuzzy linear programming problem with symmetric and right angle Triangular fuzzy number -- A New Intuitionistic Fuzzy Entropy of Order- With Applications in Multiple Attribute Decision Making -- The relationship between intuitionistic fuzzy programming and goal programming -- Implementation of Fuzzy Logic on FORTRAN Coded Free Convection around Vertical Tube -- Availability analysis of the Butter Oil Processing Plant using intuitionistic fuzzy differential equations. |
Record Nr. | UNINA-9910254164803321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Pythagorean fuzzy sets : theory and applications / / edited by Harish Garg |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (443 pages) |
Disciplina | 016.403 |
Soggetto topico |
Mathematical Logic and Foundations
Artificial intelligence Intel·ligència artificial |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-16-1989-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editor -- Pythagorean Fuzzy Information Measures -- A Survey on Recent Applications of Pythagorean Fuzzy Sets: A State-of-the-Art Between 2013 and 2020 -- 1 Introduction -- 2 Basic Concepts and Operators of Pythagorean Fuzzy Sets -- 2.1 Basic Concept of the Pythagorean Fuzzy Sets -- 2.2 Principal Operations -- 2.3 Score and Accuracy Functions -- 2.4 Distance Measures -- 2.5 Pythagorean Fuzzy Aggregation Operators -- 3 Literature Review -- 3.1 Survey Methodology -- 3.2 Survey Results -- 4 Conclusion and Future Outlook -- References -- Some New Weighted Correlation Coefficients Between Pythagorean Fuzzy Sets and Their Applications -- 1 Introduction -- 2 Basic Notions of Pythagorean Fuzzy Sets -- 3 Correlation Coefficients Between PFSs -- 3.1 Some Existing/New CCPFSs Methods -- 3.2 Numerical Illustrations for Computing CCPFSs -- 4 Some Existing/New WCCPFSs Methods -- 4.1 Some Existing WCCPFSs Methods -- 4.2 New Methods of Computing WCCPFSs -- 4.3 Numerical Verifications of the WCCPFSs Methods -- 5 Determination of Pattern Recognition and Medical Diagnostic Problem via WCCPFSs -- 5.1 Applicative Example in Pattern Recognition -- 5.2 Applicative Example in Medical Diagnosis -- 6 Conclusion -- References -- Parametric Directed Divergence Measure for Pythagorean Fuzzy Set and Their Applications to Multi-criteria Decision-Making -- 1 Introduction -- 2 Basic Concepts -- 2.1 Intuitionistic Fuzzy Set [1] -- 2.2 Hesitant Fuzzy Set [32, 33] -- 2.3 Pythagorean Fuzzy Set [11, 16] -- 3 Proposed Parametric Directed Divergence Measure for Pythagorean Fuzzy Set (PFS) -- 3.1 Parametric Divergence Measure for PFSs -- 3.2 Parametric Symmetric Divergence Measure for PFSs -- 3.3 Some Properties of Parametric Symmetric Divergence Measure for PFSs.
4 Decision-Making Method Based on Proposed Parametric Directed Divergence Measure for Pythagorean Fuzzy Set (PFS) -- 5 Illustrative Example -- 6 Conclusions -- References -- Some Trigonometric Similarity Measures Based on the Choquet Integral for Pythagorean Fuzzy Sets and Applications to Pattern Recognition -- 1 Introduction -- 2 Preliminaries -- 3 Trigonometric Similarity Measures Defined with the Choquet Integral For PFSs -- 4 Applications -- 4.1 Pattern Recognition Problem -- 4.2 Medical Diagnosis Problem -- 5 Conclusion -- References -- Isomorphic Operators and Ranking Methods for Pythagorean and Intuitionistic Fuzzy Sets -- 1 Introduction -- 2 Preliminaries -- 2.1 Related Definitions of Intuitionistic Fuzzy Sets and Pythagorean Fuzzy Sets -- 2.2 T-Norm and Its Dual T-Conorm -- 2.3 Four Types of Dual Archimedean T-Norm and S-Norm -- 3 Operations Isomorphism -- 3.1 Operations Isomorphism Between IFSs and PFSs -- 3.2 Operations Isomorphism Between IVIFSs and IVPFSs -- 3.3 Operations Isomorphism Between DHFSs and DHPFSs -- 4 Aggregation Operators Isomorphism -- 4.1 Aggregation Operators Isomorphism Between PFSs and IFSs -- 4.2 Aggregation Operators Isomorphism Between IVPFSs and IVIFSs -- 4.3 Aggregation Operators Isomorphism Between HPFSs and DHFSs -- 5 Ranking Methods Isomorphism -- 5.1 Ranking Methods Isomorphism Between IFNs and PFNs -- 5.2 Ranking Methods Isomorphism Between IVIFNs and IVPFNs -- 5.3 Ranking Methods Isomorphism Between DHFSs and DHPFSs -- 6 Proofs -- 7 Conclusion -- References -- Pythagorean Fuzzy Multi-criteria Decision-Making -- A Risk Prioritization Method Based on Interval-Valued Pythagorean Fuzzy TOPSIS and Its Application for Prioritization of the Risks Emerged at Hospitals During the Covid-19 Pandemic -- 1 Introduction -- 2 Literature Review -- 3 Situation Analysis of Turkey's Covid-19 Pandemic -- 4 Applied Methodology. 4.1 Preliminaries -- 4.2 Procedural Steps of the Proposed IVPF-TOPSIS-based Approach -- 5 Case Study: Prioritization of the Risks Emerged at Hospitals During the Covid-19 Pandemic -- 5.1 Comparative Study -- 6 Conclusion -- References -- Assessment of Agriculture Crop Selection Using Pythagorean Fuzzy CRITIC-VIKOR Decision-Making Framework -- 1 Introduction -- 1.1 Motivation and Contributions -- 2 Preliminaries -- 3 Proposed Divergence and Entropy Measures -- 4 Pythagorean Fuzzy-CRITIC-VIKOR (PF-CRITIC-VIKOR) Methodology -- 5 Case Study: Agriculture Crop Selection Problem -- 5.1 Sensitivity Analysis (SA) -- 5.2 Comparative Study -- 6 Conclusions -- References -- Choquet Integral Under Pythagorean Fuzzy Environment and Their Application in Decision Making -- 1 Introduction -- 2 Preliminaries -- 3 Pythagorean Fuzzy Choquet Integral -- 4 Application to Sustainable Solid Waste Management -- 4.1 Experts and Criteria -- 4.2 Computation -- 5 Conclusions -- References -- On Developing Pythagorean Fuzzy Dombi Geometric Bonferroni Mean Operators with Their Application to Multicriteria Decision Making -- 1 Introduction -- 2 Preliminaries -- 2.1 Pythagorean Fuzzy Set -- 2.2 Geometric Bonferroni Mean Operator -- 2.3 Dombi t-Conorm and t-Norm -- 2.4 Operations of PFNs Based on Dombi t-Conorm and t-Norm -- 3 Pythagorean Fuzzy Geometric Bonferroni Mean Operators Based on Dombi Operations -- 3.1 Pythagorean Fuzzy Dombi Geometric Bonferroni Mean Operator -- 3.2 Properties of Pythagorean Fuzzy Dombi Geometric Bonferroni Mean Operator -- 3.3 Some Special Cases of Pythagorean Fuzzy Dombi Geometric Bonferroni Mean Operator -- 3.4 Pythagorean Fuzzy Weighted Dombi Geometric Bonferroni Mean Operator -- 4 An Approach to MCDM with Pythagorean Fuzzy Information -- 5 An Illustrative Example -- 5.1 Description of the MCDM Problem -- 5.2 Results and Discussions. 5.3 Comparative Analysis -- 6 Conclusions -- References -- Schweizer-Sklar Muirhead Mean Aggregation Operators Based on Pythagorean Fuzzy Sets and Their Application in Multi-criteria Decision-Making -- 1 Introduction -- 2 Preliminaries -- 2.1 Pythagorean Fuzzy Sets -- 2.2 Muirhead Mean Operator -- 2.3 Schweizer-Sklar Operations -- 3 Pythagorean Fuzzy Schweizer-Sklar Muirhead Mean Aggregation Operations -- 3.1 Pythagorean Fuzzy Schweizer-Sklar Muirhead Mean Operator -- 3.2 Pythagorean Fuzzy Schweizer-Sklar Weighted Muirhead Mean Operator -- 4 Multi-criteria Decision-Making Problems Based on Pythagorean Fuzzy Schweizer-Sklar Muirhead Mean Aggregation Operations -- 4.1 Advantages of the Explored Operators -- 4.2 Comparative Analysis of the Explored Operators -- 4.3 Graphical Representations of the Explored Operators -- 5 Conclusion -- References -- Pythagorean Fuzzy MCDM Method Based on CODAS -- 1 Introduction -- 2 Preliminaries -- 3 Approach to PF MCDM Based on CODAS -- 3.1 The Description Issue -- 3.2 PF MCDM Method Based on CODAS -- 4 An Illustrative Example -- 5 Conclusion -- References -- A Novel Pythagorean Fuzzy MULTIMOORA Applied to the Evaluation of Energy Storage Technologies -- 1 Introduction -- 2 Review of the Literature -- 2.1 The MULTIMOORA Method -- 2.2 Pythagorean Fuzzy Operators -- 2.3 Energy Storage Technologies -- 3 Preliminaries -- 3.1 Pythagorean Fuzzy Sets -- 3.2 The Classical MULTIMOORA Method -- 4 The Proposed PF-MULTIMOORA -- 4.1 The Ratio System Technique -- 4.2 The Reference Point Technique -- 4.3 The Full Multiplicative Form Technique -- 4.4 The Overall Utility Score -- 5 Evaluation of Energy Storage Technologies -- 5.1 An Overview -- 5.2 A Practical Example -- 6 Conclusion -- References -- Extensions of the Pythagorean Fuzzy Sets -- Application of Linear Programming in Diet Problem Under Pythagorean Fuzzy Environment. 1 Introduction -- 2 Preliminaries -- 3 Proposed Method -- 4 Numerical Example -- 4.1 Diet Problem (T3PFN) -- 5 Result Analysis -- 6 Conclusion -- References -- Maclaurin Symmetric Mean-Based Archimedean Aggregation Operators for Aggregating Hesitant Pythagorean Fuzzy Elements and Their Applications to Multicriteria Decision Making -- 1 Introduction -- 2 Preliminaries -- 2.1 PFS -- 2.2 HPFSs -- 2.3 MSM Operator -- 2.4 At-CN& -- t-Ns -- 3 Development of At-CN& -- t-N-Based MSM Operators for HPFEs -- 4 An Approach to MCDM with HPF Information -- 5 Illustrative Examples -- 6 Comparison and Discussions -- 7 Conclusions -- References -- Extensions of Linguistic Pythagorean Fuzzy Sets and Their Applications in Multi-attribute Group Decision-Making -- 1 Introduction -- 2 Basic Concepts -- 3 Dual Hesitant Linguistic Pythagorean Fuzzy Sets and Their Applications in MAGDM -- 3.1 Motivations and Necessity of Proposing DHLPFSs -- 3.2 Definition of DHLPFSs -- 3.3 Operations of DHLPFEs -- 3.4 Comparison Method of DHLPFEs -- 3.5 Some Basic Aggregation Operators of DHLPFEs -- 3.6 A MAGDM Method Based on DHLPFSs -- 4 Probabilistic Dual Hesitant Linguistic Pythagorean Fuzzy Sets and Their Applications -- 4.1 Motivations of Proposing PDHLPFSs -- 4.2 Definition of PDHLPFSs -- 4.3 Operation of PDHLPFEs -- 4.4 Comparison Method of PDHLPFEs -- 4.5 Aggregation Operators of PDHLPFEs -- 4.6 MAGDM Based on PDHLPFEs -- 5 Conclusion Remarks -- References -- Pythagorean Fuzzy Soft Sets-Based MADM -- 1 Introduction -- 2 Structure of Pythagorean Fuzzy Soft Sets -- 3 Multi-criteria Group Decision-Making Using Pythagorean Fuzzy Soft Information -- 3.1 Comparison Analysis -- 4 TOPSIS Approach for Choice Making with Pythagorean Fuzzy Soft Sets -- 5 Multiple Criteria Group Decision-Making Using PFS-VIKOR Method -- 6 A Similarity Measure for PFSSs. 6.1 Weighted Similarity Measure for PFSSs. |
Record Nr. | UNINA-9910495163803321 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Pythagorean fuzzy sets : theory and applications / / edited by Harish Garg |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (443 pages) |
Disciplina | 016.403 |
Soggetto topico |
Mathematical Logic and Foundations
Artificial intelligence Intel·ligència artificial |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-16-1989-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editor -- Pythagorean Fuzzy Information Measures -- A Survey on Recent Applications of Pythagorean Fuzzy Sets: A State-of-the-Art Between 2013 and 2020 -- 1 Introduction -- 2 Basic Concepts and Operators of Pythagorean Fuzzy Sets -- 2.1 Basic Concept of the Pythagorean Fuzzy Sets -- 2.2 Principal Operations -- 2.3 Score and Accuracy Functions -- 2.4 Distance Measures -- 2.5 Pythagorean Fuzzy Aggregation Operators -- 3 Literature Review -- 3.1 Survey Methodology -- 3.2 Survey Results -- 4 Conclusion and Future Outlook -- References -- Some New Weighted Correlation Coefficients Between Pythagorean Fuzzy Sets and Their Applications -- 1 Introduction -- 2 Basic Notions of Pythagorean Fuzzy Sets -- 3 Correlation Coefficients Between PFSs -- 3.1 Some Existing/New CCPFSs Methods -- 3.2 Numerical Illustrations for Computing CCPFSs -- 4 Some Existing/New WCCPFSs Methods -- 4.1 Some Existing WCCPFSs Methods -- 4.2 New Methods of Computing WCCPFSs -- 4.3 Numerical Verifications of the WCCPFSs Methods -- 5 Determination of Pattern Recognition and Medical Diagnostic Problem via WCCPFSs -- 5.1 Applicative Example in Pattern Recognition -- 5.2 Applicative Example in Medical Diagnosis -- 6 Conclusion -- References -- Parametric Directed Divergence Measure for Pythagorean Fuzzy Set and Their Applications to Multi-criteria Decision-Making -- 1 Introduction -- 2 Basic Concepts -- 2.1 Intuitionistic Fuzzy Set [1] -- 2.2 Hesitant Fuzzy Set [32, 33] -- 2.3 Pythagorean Fuzzy Set [11, 16] -- 3 Proposed Parametric Directed Divergence Measure for Pythagorean Fuzzy Set (PFS) -- 3.1 Parametric Divergence Measure for PFSs -- 3.2 Parametric Symmetric Divergence Measure for PFSs -- 3.3 Some Properties of Parametric Symmetric Divergence Measure for PFSs.
4 Decision-Making Method Based on Proposed Parametric Directed Divergence Measure for Pythagorean Fuzzy Set (PFS) -- 5 Illustrative Example -- 6 Conclusions -- References -- Some Trigonometric Similarity Measures Based on the Choquet Integral for Pythagorean Fuzzy Sets and Applications to Pattern Recognition -- 1 Introduction -- 2 Preliminaries -- 3 Trigonometric Similarity Measures Defined with the Choquet Integral For PFSs -- 4 Applications -- 4.1 Pattern Recognition Problem -- 4.2 Medical Diagnosis Problem -- 5 Conclusion -- References -- Isomorphic Operators and Ranking Methods for Pythagorean and Intuitionistic Fuzzy Sets -- 1 Introduction -- 2 Preliminaries -- 2.1 Related Definitions of Intuitionistic Fuzzy Sets and Pythagorean Fuzzy Sets -- 2.2 T-Norm and Its Dual T-Conorm -- 2.3 Four Types of Dual Archimedean T-Norm and S-Norm -- 3 Operations Isomorphism -- 3.1 Operations Isomorphism Between IFSs and PFSs -- 3.2 Operations Isomorphism Between IVIFSs and IVPFSs -- 3.3 Operations Isomorphism Between DHFSs and DHPFSs -- 4 Aggregation Operators Isomorphism -- 4.1 Aggregation Operators Isomorphism Between PFSs and IFSs -- 4.2 Aggregation Operators Isomorphism Between IVPFSs and IVIFSs -- 4.3 Aggregation Operators Isomorphism Between HPFSs and DHFSs -- 5 Ranking Methods Isomorphism -- 5.1 Ranking Methods Isomorphism Between IFNs and PFNs -- 5.2 Ranking Methods Isomorphism Between IVIFNs and IVPFNs -- 5.3 Ranking Methods Isomorphism Between DHFSs and DHPFSs -- 6 Proofs -- 7 Conclusion -- References -- Pythagorean Fuzzy Multi-criteria Decision-Making -- A Risk Prioritization Method Based on Interval-Valued Pythagorean Fuzzy TOPSIS and Its Application for Prioritization of the Risks Emerged at Hospitals During the Covid-19 Pandemic -- 1 Introduction -- 2 Literature Review -- 3 Situation Analysis of Turkey's Covid-19 Pandemic -- 4 Applied Methodology. 4.1 Preliminaries -- 4.2 Procedural Steps of the Proposed IVPF-TOPSIS-based Approach -- 5 Case Study: Prioritization of the Risks Emerged at Hospitals During the Covid-19 Pandemic -- 5.1 Comparative Study -- 6 Conclusion -- References -- Assessment of Agriculture Crop Selection Using Pythagorean Fuzzy CRITIC-VIKOR Decision-Making Framework -- 1 Introduction -- 1.1 Motivation and Contributions -- 2 Preliminaries -- 3 Proposed Divergence and Entropy Measures -- 4 Pythagorean Fuzzy-CRITIC-VIKOR (PF-CRITIC-VIKOR) Methodology -- 5 Case Study: Agriculture Crop Selection Problem -- 5.1 Sensitivity Analysis (SA) -- 5.2 Comparative Study -- 6 Conclusions -- References -- Choquet Integral Under Pythagorean Fuzzy Environment and Their Application in Decision Making -- 1 Introduction -- 2 Preliminaries -- 3 Pythagorean Fuzzy Choquet Integral -- 4 Application to Sustainable Solid Waste Management -- 4.1 Experts and Criteria -- 4.2 Computation -- 5 Conclusions -- References -- On Developing Pythagorean Fuzzy Dombi Geometric Bonferroni Mean Operators with Their Application to Multicriteria Decision Making -- 1 Introduction -- 2 Preliminaries -- 2.1 Pythagorean Fuzzy Set -- 2.2 Geometric Bonferroni Mean Operator -- 2.3 Dombi t-Conorm and t-Norm -- 2.4 Operations of PFNs Based on Dombi t-Conorm and t-Norm -- 3 Pythagorean Fuzzy Geometric Bonferroni Mean Operators Based on Dombi Operations -- 3.1 Pythagorean Fuzzy Dombi Geometric Bonferroni Mean Operator -- 3.2 Properties of Pythagorean Fuzzy Dombi Geometric Bonferroni Mean Operator -- 3.3 Some Special Cases of Pythagorean Fuzzy Dombi Geometric Bonferroni Mean Operator -- 3.4 Pythagorean Fuzzy Weighted Dombi Geometric Bonferroni Mean Operator -- 4 An Approach to MCDM with Pythagorean Fuzzy Information -- 5 An Illustrative Example -- 5.1 Description of the MCDM Problem -- 5.2 Results and Discussions. 5.3 Comparative Analysis -- 6 Conclusions -- References -- Schweizer-Sklar Muirhead Mean Aggregation Operators Based on Pythagorean Fuzzy Sets and Their Application in Multi-criteria Decision-Making -- 1 Introduction -- 2 Preliminaries -- 2.1 Pythagorean Fuzzy Sets -- 2.2 Muirhead Mean Operator -- 2.3 Schweizer-Sklar Operations -- 3 Pythagorean Fuzzy Schweizer-Sklar Muirhead Mean Aggregation Operations -- 3.1 Pythagorean Fuzzy Schweizer-Sklar Muirhead Mean Operator -- 3.2 Pythagorean Fuzzy Schweizer-Sklar Weighted Muirhead Mean Operator -- 4 Multi-criteria Decision-Making Problems Based on Pythagorean Fuzzy Schweizer-Sklar Muirhead Mean Aggregation Operations -- 4.1 Advantages of the Explored Operators -- 4.2 Comparative Analysis of the Explored Operators -- 4.3 Graphical Representations of the Explored Operators -- 5 Conclusion -- References -- Pythagorean Fuzzy MCDM Method Based on CODAS -- 1 Introduction -- 2 Preliminaries -- 3 Approach to PF MCDM Based on CODAS -- 3.1 The Description Issue -- 3.2 PF MCDM Method Based on CODAS -- 4 An Illustrative Example -- 5 Conclusion -- References -- A Novel Pythagorean Fuzzy MULTIMOORA Applied to the Evaluation of Energy Storage Technologies -- 1 Introduction -- 2 Review of the Literature -- 2.1 The MULTIMOORA Method -- 2.2 Pythagorean Fuzzy Operators -- 2.3 Energy Storage Technologies -- 3 Preliminaries -- 3.1 Pythagorean Fuzzy Sets -- 3.2 The Classical MULTIMOORA Method -- 4 The Proposed PF-MULTIMOORA -- 4.1 The Ratio System Technique -- 4.2 The Reference Point Technique -- 4.3 The Full Multiplicative Form Technique -- 4.4 The Overall Utility Score -- 5 Evaluation of Energy Storage Technologies -- 5.1 An Overview -- 5.2 A Practical Example -- 6 Conclusion -- References -- Extensions of the Pythagorean Fuzzy Sets -- Application of Linear Programming in Diet Problem Under Pythagorean Fuzzy Environment. 1 Introduction -- 2 Preliminaries -- 3 Proposed Method -- 4 Numerical Example -- 4.1 Diet Problem (T3PFN) -- 5 Result Analysis -- 6 Conclusion -- References -- Maclaurin Symmetric Mean-Based Archimedean Aggregation Operators for Aggregating Hesitant Pythagorean Fuzzy Elements and Their Applications to Multicriteria Decision Making -- 1 Introduction -- 2 Preliminaries -- 2.1 PFS -- 2.2 HPFSs -- 2.3 MSM Operator -- 2.4 At-CN& -- t-Ns -- 3 Development of At-CN& -- t-N-Based MSM Operators for HPFEs -- 4 An Approach to MCDM with HPF Information -- 5 Illustrative Examples -- 6 Comparison and Discussions -- 7 Conclusions -- References -- Extensions of Linguistic Pythagorean Fuzzy Sets and Their Applications in Multi-attribute Group Decision-Making -- 1 Introduction -- 2 Basic Concepts -- 3 Dual Hesitant Linguistic Pythagorean Fuzzy Sets and Their Applications in MAGDM -- 3.1 Motivations and Necessity of Proposing DHLPFSs -- 3.2 Definition of DHLPFSs -- 3.3 Operations of DHLPFEs -- 3.4 Comparison Method of DHLPFEs -- 3.5 Some Basic Aggregation Operators of DHLPFEs -- 3.6 A MAGDM Method Based on DHLPFSs -- 4 Probabilistic Dual Hesitant Linguistic Pythagorean Fuzzy Sets and Their Applications -- 4.1 Motivations of Proposing PDHLPFSs -- 4.2 Definition of PDHLPFSs -- 4.3 Operation of PDHLPFEs -- 4.4 Comparison Method of PDHLPFEs -- 4.5 Aggregation Operators of PDHLPFEs -- 4.6 MAGDM Based on PDHLPFEs -- 5 Conclusion Remarks -- References -- Pythagorean Fuzzy Soft Sets-Based MADM -- 1 Introduction -- 2 Structure of Pythagorean Fuzzy Soft Sets -- 3 Multi-criteria Group Decision-Making Using Pythagorean Fuzzy Soft Information -- 3.1 Comparison Analysis -- 4 TOPSIS Approach for Choice Making with Pythagorean Fuzzy Soft Sets -- 5 Multiple Criteria Group Decision-Making Using PFS-VIKOR Method -- 6 A Similarity Measure for PFSSs. 6.1 Weighted Similarity Measure for PFSSs. |
Record Nr. | UNISA-996466394203316 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Q-Rung orthopair fuzzy sets : theory and applications. / / edited by Harish Garg |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (558 pages) |
Disciplina | 511.3223 |
Soggetto topico |
Fuzzy sets
Presa de decisions Matemàtica Conjunts borrosos |
Soggetto genere / forma | Llibres electrònics |
ISBN |
9789811914492
9789811914485 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editor -- 1 q-Rung Orthopair Fuzzy Supra Topological Applications in Data Mining Process -- 1.1 Introduction -- 1.2 Preliminary -- 1.3 q-Rung Orthopair Fuzzy Supra Topological Spaces -- 1.4 Mappings of q-Rung Orthopair Fuzzy Spaces -- 1.5 Algorithm for Data Mining Problem Via q-Rung Orthopair Fuzzy Supra Topology -- 1.6 Numerical Example -- 1.7 Conclusion and Future Work -- References -- 2 q-Rung Orthopair Fuzzy Soft Topology with Multi-attribute Decision-Making -- 2.1 Introduction -- 2.2 Some Elementary Models -- 2.3 q-Rung Orthopair Fuzzy Soft Sets -- 2.4 q-Rung Orthopair Fuzzy Soft Topology -- 2.4.1 q-ROFS Separation Axioms -- 2.5 Multi-attribute Decision-Making -- 2.5.1 Numerical Application -- 2.5.2 Generalized Choice Value Method -- 2.6 Conclusion -- References -- 3 Decision-Making on Patients' Medical Status Based on a q-Rung Orthopair Fuzzy Max-Min-Max Composite Relation -- 3.1 Introduction -- 3.2 Preliminaries -- 3.2.1 q-Rung Orthopair Fuzzy Sets -- 3.3 q-Rung Orthopair Fuzzy Max-Min-Max Composite Relation -- 3.3.1 Numerical Application -- 3.4 Application of qROFMMMCR in Disease Diagnosis -- 3.4.1 qROFMMMCR in Terms of Patients and Diseases with Respect to Symptoms -- 3.4.2 Experiment of Disease Diagnosis -- 3.5 Conclusion -- References -- 4 Soergel Distance Measures for q-Rung Orthopair Fuzzy Sets and Their Applications -- 4.1 Introduction -- 4.2 Background -- 4.2.1 q-Rung Orthopair Fuzzy Sets -- 4.2.2 Some Existing Information Measures for q-ROFSs -- 4.3 Soergel Distance Measures for q-ROFSs and Their Validation/Efficiency -- 4.3.1 Twelve Types of Soergel Distance Measures for q-ROFSs -- 4.3.2 Twelve Types of Weighted Soergel Distance Measures for q-ROFSs -- 4.3.3 The Validation/Efficiency of SoDMs and SoSMs for q-ROFSs -- 4.4 Applications of SoDMs -- 4.4.1 Proposed Decision-Making Method.
4.4.2 Illustrative Examples -- 4.5 Comparison Analysis -- 4.6 Sensitivity Analysis and Advantages of SoDMs -- 4.6.1 Sensitivity Analysis of SoDMs for the Value of q -- 4.6.2 Advantages of Proposed Approaches -- 4.6.3 Limitations of Proposed Approaches -- 4.7 Conclusion -- References -- 5 TOPSIS Techniques on q-Rung Orthopair Fuzzy Sets and Its Extensions -- 5.1 Introduction -- 5.2 Preliminaries -- 5.2.1 TOPSIS -- 5.3 TOPSIS Techniques on q-ROFS -- 5.4 Combined Weighting TOPSIS MADM Using q-ROHFS -- 5.5 TOPSIS Techniques on q-ROFSfS -- 5.6 Applications -- 5.7 Conclusions -- References -- 6 Knowledge Measure-Based q-Rung Orthopair Fuzzy Inventory Model -- 6.1 Introduction -- 6.1.1 Literature Review -- 6.1.2 Research Gap and the Contribution -- 6.2 Preliminaries -- 6.3 Model Formulation -- 6.3.1 Case (I): Replacement of the Faulty Option by Warranty Claiming and Repair Option -- 6.3.2 Case (ii): Replacement of the Faulty Option by Warranty Claiming and the Emergency Purchase Option -- 6.3.3 Inventory Model with q-Rung Orthopair Fuzzy Variables -- 6.3.4 Vendor's Optimal Policy -- 6.4 Numerical Computation -- 6.4.1 Sensitive Analysis -- 6.4.2 Comparison Study -- 6.5 Conclusion -- Appendix -- References -- 7 Higher Type q-Rung Orthopair Fuzzy Sets: Interval Analysis -- 7.1 Introduction -- 7.2 Basic Concepts of q-RIVOFSs -- 7.3 Some Novel Measures for q-RIVOFSs -- 7.3.1 Cross-Entropy Measure for q-RIVOFSs -- 7.3.2 Hausdorff Distance for q-RIVOFSs -- 7.4 Multi-Attribute Decision-Making Method Under q-RIVOF Circumstances -- 7.4.1 TODIM Method with q-RIVOFSs -- 7.5 Illustrative Example -- 7.5.1 Case Description -- 7.5.2 Illustration of the Proposed Q-RIVOFS-TODIM Approach -- 7.5.3 Sensitivity Analysis -- 7.5.4 Comparative Analysis -- 7.6 Conclusion -- References. 8 Evidence-Based Cloud Vendor Assessment with Generalized Orthopair Fuzzy Information and Partial Weight Data -- 8.1 Introduction -- 8.2 Literature Review -- 8.2.1 CV Selection Using Decision Models -- 8.2.2 GOFS-Based Decision Approaches -- 8.3 A New Scientific Framework for CV Selection -- 8.3.1 Preliminaries -- 8.3.2 Mathematical Model with GOFS -- 8.3.3 Evidence-Based Ranking Algorithm with GOFS -- 8.4 Real Case Example-Selection of CVs -- 8.5 Comparative Analysis -- 8.6 Conclusion -- References -- 9 Supplier Selection Process Based on CODAS Method Using q-Rung Orthopair Fuzzy Information -- 9.1 Introduction -- 9.2 q-Rung Orthopair Fuzzy Sets (q-ROFS) -- 9.2.1 Algebraic Operations q-ROFS -- 9.3 Combinative Distance-Based Assessment (CODAS) -- 9.3.1 Steps for the CODAS Method -- 9.4 CODAS and q-Rung Orthopair Fuzzy Sets for the Supplier Selection Process -- 9.5 Case Numeric -- 9.6 Discussions -- 9.7 Conclusions -- References -- 10 Group Decision-Making Framework with Generalized Orthopair Fuzzy 2-Tuple Linguistic Information -- 10.1 Introduction -- 10.2 Preliminaries -- 10.2.1 The 2-Tuple Linguistic Representation Model -- 10.2.2 The MSM Operator and its Weighted Form -- 10.3 The GOFTLMSM Aggregation Operator and its Weighted Form -- 10.3.1 The GOFTLMSM Operator -- 10.3.2 The GOFTLWMSM Operator -- 10.4 The GOFTLDMSM Aggregation Operator and its Weighted Form -- 10.4.1 The GOFTLDMSM Operator -- 10.4.2 The GOFTLWDMSM Operator -- 10.5 An MAGDM Model with GOFTL Information -- 10.6 Illustrative Example and Discussion -- 10.6.1 Evaluation Process of the Proposed Method -- 10.6.2 Sensitivity Analysis -- 10.6.3 Comparative Analysis -- 10.6.4 Advantages and Superiorities of the Proposed Work -- 10.7 Conclusions -- References -- 11 3PL Service Provider Selection with q-Rung Orthopair Fuzzy Based CODAS Method -- 11.1 Introduction -- 11.2 Literature Survey. 11.3 q-ROF CODAS Method -- 11.3.1 q-Rung Orthopair Fuzzy Sets -- 11.3.2 q-ROF CODAS Methodology -- 11.4 Case Study -- 11.5 Conclusion -- References -- 12 An Integrated Proximity Indexed Value and q-Rung Orthopair Fuzzy Decision-Making Model for Prioritization of Green Campus Transportation -- 12.1 Introduction -- 12.2 Literature Review -- 12.3 Case Study -- 12.3.1 Definition of Alternatives and Criteria -- 12.4 Preliminaries -- 12.5 Proposed Methodologies -- 12.5.1 Proximity Indexed Value (PIV) Method -- 12.5.2 Proposed q-ROF PIV Method -- 12.6 Experimental Results -- 12.7 Discussion -- 12.8 Conclusion -- References -- 13 Platform-Based Corporate Social Responsibility Evaluation with Three-Way Group Decisions Under Q-Rung Orthopair Fuzzy Environment -- 13.1 Introduction -- 13.2 Preliminaries -- 13.2.1 q-rung Orthopair Fuzzy Sets (q-ROFSs) -- 13.2.2 Three Way Decisions (TWDs) -- 13.3 CSR Evaluation Method Based on TWDs with q-ROFSs -- 13.3.1 Information Fusion Method -- 13.3.2 CSR Classification of Platform-Based Enterprises with TWDs -- 13.4 An Illustrative Example -- 13.4.1 Decision Analysis with Our Proposed Method -- 13.4.2 Comparative Experiment -- 13.4.3 Sensitivity Analysis -- 13.5 Conclusions -- References -- 14 MARCOS Technique by Using q-Rung Orthopair Fuzzy Sets for Evaluating the Performance of Insurance Companies in Terms of Healthcare Services -- 14.1 Introduction -- 14.2 Preliminaries -- 14.3 Q-ROF-MARCOS Method -- 14.4 Analysis of Healthcare Services Under Q-ROFS-MARCOS Technique -- 14.5 Sensitivity Analysis -- 14.6 Conclusion -- References -- 15 Interval Complex q-Rung Orthopair Fuzzy Aggregation Operators and Their Applications in Cite Selection of Electric Vehicle -- 15.1 Introduction -- 15.2 Preliminaries -- 15.3 Interval Complex q-Rung Orthopair Fuzzy Sets. 15.4 Interval Complex q-Rung Orthopair Fuzzy Aggregate Operators for MADM Problems -- 15.5 The MADM Model Based on IVCq-ROFWA and IVCq-ROFGA Operators -- 15.6 An Illustrative Example for the Validation of the Proposed MADM Model -- 15.7 Conclusion and Future Work -- References -- 16 A Novel Fermatean Fuzzy Analytic Hierarchy Process Proposition and Its Usage for Supplier Selection Problem in Industry 4.0 Transition -- 16.1 Introduction -- 16.2 Supplier Selection in Industry 4.0 Transition -- 16.3 Preliminaries: Fermatean Fuzzy Sets -- 16.4 A Novel Fermatean Fuzzy AHP Extension -- 16.5 An Application in Turkey -- 16.6 Discussion and Concluding Remarks -- References -- 17 Pentagonal q-Rung Orthopair Numbers and Their Applications -- 17.1 Introduction -- 17.2 Preliminary -- 17.3 Pentagonal q-Rung Orthopair Numbers -- 17.4 Multi-criteria Decision-Making Method Based on Pq-RO-Numbers -- 17.5 Conclusion -- References -- 18 q-Rung Orthopair Fuzzy Soft Set-Based Multi-criteria Decision-Making -- 18.1 Introduction -- 18.2 q-ROFSSs -- 18.2.1 Weighted SM for q-ROFSSs -- 18.3 MCDM Using q-Rung Orthopair Fuzzy Soft Information -- 18.4 MCDM with TOPSIS Approach Based on q-ROFSSs -- 18.5 MCDM Using q-ROFS VIKOR Method -- 18.6 Practical implementation of proposed SM related to COVID-19 -- 18.7 Conclusion -- References -- 19 Development of Heronian Mean-Based Aggregation Operators Under Interval-Valued Dual Hesitant q-Rung Orthopair Fuzzy Environments for Multicriteria Decision-Making -- 19.1 Introduction -- 19.2 Preliminaries -- 19.2.1 DHq-ROFS -- 19.2.2 IVDHq-ROFS -- 19.2.3 Operations on IVDHq-ROFNs -- 19.2.4 HM Operator -- 19.2.5 GHM Operator -- 19.3 HM-Based IVDHq-ROF Aggregation Operators and Its Properties -- 19.3.1 IVDHq-ROFHM Operator -- 19.3.2 IVDHq-ROFWHM Operator -- 19.3.3 IVDHq-OFGHM Operator -- 19.3.4 IVDHq-ROFWGHM Operator. 19.4 Approach to MCDM with HM-Based IVDHq-ROF Information. |
Record Nr. | UNISA-996490347203316 |
Singapore : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Q-Rung orthopair fuzzy sets : theory and applications. / / edited by Harish Garg |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (558 pages) |
Disciplina | 511.3223 |
Soggetto topico |
Fuzzy sets
Presa de decisions Matemàtica Conjunts borrosos |
Soggetto genere / forma | Llibres electrònics |
ISBN |
9789811914492
9789811914485 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editor -- 1 q-Rung Orthopair Fuzzy Supra Topological Applications in Data Mining Process -- 1.1 Introduction -- 1.2 Preliminary -- 1.3 q-Rung Orthopair Fuzzy Supra Topological Spaces -- 1.4 Mappings of q-Rung Orthopair Fuzzy Spaces -- 1.5 Algorithm for Data Mining Problem Via q-Rung Orthopair Fuzzy Supra Topology -- 1.6 Numerical Example -- 1.7 Conclusion and Future Work -- References -- 2 q-Rung Orthopair Fuzzy Soft Topology with Multi-attribute Decision-Making -- 2.1 Introduction -- 2.2 Some Elementary Models -- 2.3 q-Rung Orthopair Fuzzy Soft Sets -- 2.4 q-Rung Orthopair Fuzzy Soft Topology -- 2.4.1 q-ROFS Separation Axioms -- 2.5 Multi-attribute Decision-Making -- 2.5.1 Numerical Application -- 2.5.2 Generalized Choice Value Method -- 2.6 Conclusion -- References -- 3 Decision-Making on Patients' Medical Status Based on a q-Rung Orthopair Fuzzy Max-Min-Max Composite Relation -- 3.1 Introduction -- 3.2 Preliminaries -- 3.2.1 q-Rung Orthopair Fuzzy Sets -- 3.3 q-Rung Orthopair Fuzzy Max-Min-Max Composite Relation -- 3.3.1 Numerical Application -- 3.4 Application of qROFMMMCR in Disease Diagnosis -- 3.4.1 qROFMMMCR in Terms of Patients and Diseases with Respect to Symptoms -- 3.4.2 Experiment of Disease Diagnosis -- 3.5 Conclusion -- References -- 4 Soergel Distance Measures for q-Rung Orthopair Fuzzy Sets and Their Applications -- 4.1 Introduction -- 4.2 Background -- 4.2.1 q-Rung Orthopair Fuzzy Sets -- 4.2.2 Some Existing Information Measures for q-ROFSs -- 4.3 Soergel Distance Measures for q-ROFSs and Their Validation/Efficiency -- 4.3.1 Twelve Types of Soergel Distance Measures for q-ROFSs -- 4.3.2 Twelve Types of Weighted Soergel Distance Measures for q-ROFSs -- 4.3.3 The Validation/Efficiency of SoDMs and SoSMs for q-ROFSs -- 4.4 Applications of SoDMs -- 4.4.1 Proposed Decision-Making Method.
4.4.2 Illustrative Examples -- 4.5 Comparison Analysis -- 4.6 Sensitivity Analysis and Advantages of SoDMs -- 4.6.1 Sensitivity Analysis of SoDMs for the Value of q -- 4.6.2 Advantages of Proposed Approaches -- 4.6.3 Limitations of Proposed Approaches -- 4.7 Conclusion -- References -- 5 TOPSIS Techniques on q-Rung Orthopair Fuzzy Sets and Its Extensions -- 5.1 Introduction -- 5.2 Preliminaries -- 5.2.1 TOPSIS -- 5.3 TOPSIS Techniques on q-ROFS -- 5.4 Combined Weighting TOPSIS MADM Using q-ROHFS -- 5.5 TOPSIS Techniques on q-ROFSfS -- 5.6 Applications -- 5.7 Conclusions -- References -- 6 Knowledge Measure-Based q-Rung Orthopair Fuzzy Inventory Model -- 6.1 Introduction -- 6.1.1 Literature Review -- 6.1.2 Research Gap and the Contribution -- 6.2 Preliminaries -- 6.3 Model Formulation -- 6.3.1 Case (I): Replacement of the Faulty Option by Warranty Claiming and Repair Option -- 6.3.2 Case (ii): Replacement of the Faulty Option by Warranty Claiming and the Emergency Purchase Option -- 6.3.3 Inventory Model with q-Rung Orthopair Fuzzy Variables -- 6.3.4 Vendor's Optimal Policy -- 6.4 Numerical Computation -- 6.4.1 Sensitive Analysis -- 6.4.2 Comparison Study -- 6.5 Conclusion -- Appendix -- References -- 7 Higher Type q-Rung Orthopair Fuzzy Sets: Interval Analysis -- 7.1 Introduction -- 7.2 Basic Concepts of q-RIVOFSs -- 7.3 Some Novel Measures for q-RIVOFSs -- 7.3.1 Cross-Entropy Measure for q-RIVOFSs -- 7.3.2 Hausdorff Distance for q-RIVOFSs -- 7.4 Multi-Attribute Decision-Making Method Under q-RIVOF Circumstances -- 7.4.1 TODIM Method with q-RIVOFSs -- 7.5 Illustrative Example -- 7.5.1 Case Description -- 7.5.2 Illustration of the Proposed Q-RIVOFS-TODIM Approach -- 7.5.3 Sensitivity Analysis -- 7.5.4 Comparative Analysis -- 7.6 Conclusion -- References. 8 Evidence-Based Cloud Vendor Assessment with Generalized Orthopair Fuzzy Information and Partial Weight Data -- 8.1 Introduction -- 8.2 Literature Review -- 8.2.1 CV Selection Using Decision Models -- 8.2.2 GOFS-Based Decision Approaches -- 8.3 A New Scientific Framework for CV Selection -- 8.3.1 Preliminaries -- 8.3.2 Mathematical Model with GOFS -- 8.3.3 Evidence-Based Ranking Algorithm with GOFS -- 8.4 Real Case Example-Selection of CVs -- 8.5 Comparative Analysis -- 8.6 Conclusion -- References -- 9 Supplier Selection Process Based on CODAS Method Using q-Rung Orthopair Fuzzy Information -- 9.1 Introduction -- 9.2 q-Rung Orthopair Fuzzy Sets (q-ROFS) -- 9.2.1 Algebraic Operations q-ROFS -- 9.3 Combinative Distance-Based Assessment (CODAS) -- 9.3.1 Steps for the CODAS Method -- 9.4 CODAS and q-Rung Orthopair Fuzzy Sets for the Supplier Selection Process -- 9.5 Case Numeric -- 9.6 Discussions -- 9.7 Conclusions -- References -- 10 Group Decision-Making Framework with Generalized Orthopair Fuzzy 2-Tuple Linguistic Information -- 10.1 Introduction -- 10.2 Preliminaries -- 10.2.1 The 2-Tuple Linguistic Representation Model -- 10.2.2 The MSM Operator and its Weighted Form -- 10.3 The GOFTLMSM Aggregation Operator and its Weighted Form -- 10.3.1 The GOFTLMSM Operator -- 10.3.2 The GOFTLWMSM Operator -- 10.4 The GOFTLDMSM Aggregation Operator and its Weighted Form -- 10.4.1 The GOFTLDMSM Operator -- 10.4.2 The GOFTLWDMSM Operator -- 10.5 An MAGDM Model with GOFTL Information -- 10.6 Illustrative Example and Discussion -- 10.6.1 Evaluation Process of the Proposed Method -- 10.6.2 Sensitivity Analysis -- 10.6.3 Comparative Analysis -- 10.6.4 Advantages and Superiorities of the Proposed Work -- 10.7 Conclusions -- References -- 11 3PL Service Provider Selection with q-Rung Orthopair Fuzzy Based CODAS Method -- 11.1 Introduction -- 11.2 Literature Survey. 11.3 q-ROF CODAS Method -- 11.3.1 q-Rung Orthopair Fuzzy Sets -- 11.3.2 q-ROF CODAS Methodology -- 11.4 Case Study -- 11.5 Conclusion -- References -- 12 An Integrated Proximity Indexed Value and q-Rung Orthopair Fuzzy Decision-Making Model for Prioritization of Green Campus Transportation -- 12.1 Introduction -- 12.2 Literature Review -- 12.3 Case Study -- 12.3.1 Definition of Alternatives and Criteria -- 12.4 Preliminaries -- 12.5 Proposed Methodologies -- 12.5.1 Proximity Indexed Value (PIV) Method -- 12.5.2 Proposed q-ROF PIV Method -- 12.6 Experimental Results -- 12.7 Discussion -- 12.8 Conclusion -- References -- 13 Platform-Based Corporate Social Responsibility Evaluation with Three-Way Group Decisions Under Q-Rung Orthopair Fuzzy Environment -- 13.1 Introduction -- 13.2 Preliminaries -- 13.2.1 q-rung Orthopair Fuzzy Sets (q-ROFSs) -- 13.2.2 Three Way Decisions (TWDs) -- 13.3 CSR Evaluation Method Based on TWDs with q-ROFSs -- 13.3.1 Information Fusion Method -- 13.3.2 CSR Classification of Platform-Based Enterprises with TWDs -- 13.4 An Illustrative Example -- 13.4.1 Decision Analysis with Our Proposed Method -- 13.4.2 Comparative Experiment -- 13.4.3 Sensitivity Analysis -- 13.5 Conclusions -- References -- 14 MARCOS Technique by Using q-Rung Orthopair Fuzzy Sets for Evaluating the Performance of Insurance Companies in Terms of Healthcare Services -- 14.1 Introduction -- 14.2 Preliminaries -- 14.3 Q-ROF-MARCOS Method -- 14.4 Analysis of Healthcare Services Under Q-ROFS-MARCOS Technique -- 14.5 Sensitivity Analysis -- 14.6 Conclusion -- References -- 15 Interval Complex q-Rung Orthopair Fuzzy Aggregation Operators and Their Applications in Cite Selection of Electric Vehicle -- 15.1 Introduction -- 15.2 Preliminaries -- 15.3 Interval Complex q-Rung Orthopair Fuzzy Sets. 15.4 Interval Complex q-Rung Orthopair Fuzzy Aggregate Operators for MADM Problems -- 15.5 The MADM Model Based on IVCq-ROFWA and IVCq-ROFGA Operators -- 15.6 An Illustrative Example for the Validation of the Proposed MADM Model -- 15.7 Conclusion and Future Work -- References -- 16 A Novel Fermatean Fuzzy Analytic Hierarchy Process Proposition and Its Usage for Supplier Selection Problem in Industry 4.0 Transition -- 16.1 Introduction -- 16.2 Supplier Selection in Industry 4.0 Transition -- 16.3 Preliminaries: Fermatean Fuzzy Sets -- 16.4 A Novel Fermatean Fuzzy AHP Extension -- 16.5 An Application in Turkey -- 16.6 Discussion and Concluding Remarks -- References -- 17 Pentagonal q-Rung Orthopair Numbers and Their Applications -- 17.1 Introduction -- 17.2 Preliminary -- 17.3 Pentagonal q-Rung Orthopair Numbers -- 17.4 Multi-criteria Decision-Making Method Based on Pq-RO-Numbers -- 17.5 Conclusion -- References -- 18 q-Rung Orthopair Fuzzy Soft Set-Based Multi-criteria Decision-Making -- 18.1 Introduction -- 18.2 q-ROFSSs -- 18.2.1 Weighted SM for q-ROFSSs -- 18.3 MCDM Using q-Rung Orthopair Fuzzy Soft Information -- 18.4 MCDM with TOPSIS Approach Based on q-ROFSSs -- 18.5 MCDM Using q-ROFS VIKOR Method -- 18.6 Practical implementation of proposed SM related to COVID-19 -- 18.7 Conclusion -- References -- 19 Development of Heronian Mean-Based Aggregation Operators Under Interval-Valued Dual Hesitant q-Rung Orthopair Fuzzy Environments for Multicriteria Decision-Making -- 19.1 Introduction -- 19.2 Preliminaries -- 19.2.1 DHq-ROFS -- 19.2.2 IVDHq-ROFS -- 19.2.3 Operations on IVDHq-ROFNs -- 19.2.4 HM Operator -- 19.2.5 GHM Operator -- 19.3 HM-Based IVDHq-ROF Aggregation Operators and Its Properties -- 19.3.1 IVDHq-ROFHM Operator -- 19.3.2 IVDHq-ROFWHM Operator -- 19.3.3 IVDHq-OFGHM Operator -- 19.3.4 IVDHq-ROFWGHM Operator. 19.4 Approach to MCDM with HM-Based IVDHq-ROF Information. |
Record Nr. | UNINA-9910592994203321 |
Singapore : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A Roadmap for Enabling Industry 4. 0 by Artificial Intelligence |
Autore | Chatterjee Jyotir Moy |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (339 pages) |
Altri autori (Persone) |
GargHarish
ThakurR. N |
ISBN |
1-119-90514-1
1-119-90513-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Artificial Intelligence-The Driving Force of Industry 4.0 -- 1.1 Introduction -- 1.2 Methodology -- 1.3 Scope of AI in Global Economy and Industry 4.0 -- 1.3.1 Artificial Intelligence-Evolution and Implications -- 1.3.2 Artificial Intelligence and Industry 4.0-Investments and Returns on Economy -- 1.3.3 The Driving Forces for Industry 4.0 -- 1.4 Artificial Intelligence-Manufacturing Sector -- 1.4.1 AI Diversity-Applications to Manufacturing Sector -- 1.4.2 Future Roadmap of AI-Prospects to Manufacturing Sector in Industry 4.0 -- 1.5 Conclusion -- References -- Chapter 2 Industry 4.0, Intelligent Manufacturing, Internet of Things, Cloud Computing: An Overview -- 2.1 Introduction -- 2.2 Industrial Transformation/Value Chain Transformation -- 2.2.1 First Scenario: Reducing Waste and Increasing Productivity Using IIoT -- 2.2.2 Second Scenario: Selling Outcome (User Demand)-Based Services Using IIoT -- 2.3 IIoT Reference Architecture -- 2.4 IIoT Technical Concepts -- 2.5 IIoT and Cloud Computing -- 2.6 IIoT and Security -- References -- Chapter 3 Artificial Intelligence of Things (AIoT) and Industry 4.0-Based Supply Chain (FMCG Industry) -- 3.1 Introduction -- 3.2 Concepts -- 3.2.1 Internet of Things -- 3.2.2 The Industrial Internet of Things (IIoT) -- 3.2.3 Artificial Intelligence of Things (AIoT) -- 3.3 AIoT-Based Supply Chain -- 3.4 Conclusion -- References -- Chapter 4 Application of Artificial Intelligence in Forecasting the Demand for Supply Chains Considering Industry 4.0 -- 4.1 Introduction -- 4.2 Literature Review -- 4.2.1 Summary of the First Three Industrial Revolutions -- 4.2.2 Emergence of Industry 4.0 -- 4.2.3 Some of the Challenges of Industry 4.0 -- 4.3 Application of Artificial Intelligence in Supply Chain Demand Forecasting -- 4.4 Proposed Approach.
4.4.1 Mathematical Model -- 4.4.2 Advantages of the Proposed Model -- 4.5 Discussion and Conclusion -- References -- Chapter 5 Integrating IoT and Deep Learning-The Driving Force of Industry 4.0 -- 5.1 Motivation and Background -- 5.2 Bringing Intelligence Into IoT Devices -- 5.3 The Foundation of CR-IoT Network -- 5.3.1 Various AI Technique in CR-IoT Network -- 5.3.2 Artificial Neural Network (ANN) -- 5.3.3 Metaheuristic Technique -- 5.3.4 Rule-Based System -- 5.3.5 Ontology-Based System -- 5.3.6 Probabilistic Models -- 5.4 The Principles of Deep Learning and Its Implementation in CR-IoT Network -- 5.5 Realization of CR-IoT Network in Daily Life Examples -- 5.6 AI-Enabled Agriculture and Smart Irrigation System-Case Study -- 5.7 Conclusion -- References -- Chapter 6 A Systematic Review on Blockchain Security Technology and Big Data Employed in Cloud Environment -- 6.1 Introduction -- 6.2 Overview of Blockchain -- 6.3 Components of Blockchain -- 6.3.1 Data Block -- 6.3.2 Smart Contracts -- 6.3.3 Consensus Algorithms -- 6.4 Safety Issues in Blockchain Technology -- 6.5 Usage of Big Data Framework in Dynamic Supply Chain System -- 6.6 Machine Learning and Big Data -- 6.6.1 Overview of Shallow Models -- 6.6.1.1 Support Vector Machine (SVM) -- 6.6.1.2 Artificial Neural Network (ANN) -- 6.6.1.3 K-Nearest Neighbor (KNN) -- 6.6.1.4 Clustering -- 6.6.1.5 Decision Tree -- 6.7 Advantages of Using Big Data for Supply Chain and Blockchain Systems -- 6.7.1 Replenishment Planning -- 6.7.2 Optimizing Orders -- 6.7.3 Arranging and Organizing -- 6.7.4 Enhanced Demand Structuring -- 6.7.5 Real-Time Management of the Supply Chain -- 6.7.6 Enhanced Reaction -- 6.7.7 Planning and Growth of Inventories -- 6.8 IoT-Enabled Blockchains -- 6.8.1 Securing IoT Applications by Utilizing Blockchain -- 6.8.2 Blockchain Based on Permission -- 6.8.3 Blockchain Improvements in IoT. 6.8.3.1 Blockchain Can Store Information Coming from IoT Devices -- 6.8.3.2 Secure Data Storage with Blockchain Distribution -- 6.8.3.3 Data Encryption via Hash Key and Tested by the Miners -- 6.8.3.4 Spoofing Attacks and Data Loss Prevention -- 6.8.3.5 Unauthorized Access Prevention Using Blockchain -- 6.8.3.6 Exclusion of Centralized Cloud Servers -- 6.9 Conclusions -- References -- Chapter 7 Deep Learning Approach to Industrial Energy Sector and Energy Forecasting with Prophet -- 7.1 Introduction -- 7.2 Related Work -- 7.3 Methodology -- 7.3.1 Splitting of Data (Test/Train) -- 7.3.2 Prophet Model -- 7.3.3 Data Cleaning -- 7.3.4 Model Implementation -- 7.4 Results -- 7.4.1 Comparing Forecast to Actuals -- 7.4.2 Adding Holidays -- 7.4.3 Comparing Forecast to Actuals with the Cleaned Data -- 7.5 Conclusion and Future Scope -- References -- Chapter 8 Application of Novel AI Mechanism for Minimizing Private Data Release in Cyber-Physical Systems -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Proposed Mechanism -- 8.4 Experimental Results -- 8.5 Future Directions -- 8.6 Conclusion -- References -- Chapter 9 Environmental and Industrial Applications Using Internet of Things (IoT) -- 9.1 Introduction -- 9.2 IoT-Based Environmental Applications -- 9.3 Smart Environmental Monitoring -- 9.3.1 Air Quality Assessment -- 9.3.2 Water Quality Assessment -- 9.3.3 Soil Quality Assessment -- 9.3.4 Environmental Health-Related to COVID-19 Monitoring -- 9.4 Applications of Sensors Network in Agro-Industrial System -- 9.5 Applications of IoT in Industry -- 9.5.1 Application of IoT in the Autonomous Field -- 9.5.2 Applications of IoT in Software Industries -- 9.5.3 Sensors in Industry -- 9.6 Challenges of IoT Applications in Environmental and Industrial Applications -- 9.7 Conclusions and Recommendations -- Acknowledgments -- References. Chapter 10 An Introduction to Security in Internet of Things (IoT) and Big Data -- 10.1 Introduction -- 10.2 Allusion Design of IoT -- 10.2.1 Stage 1-Edge Tool -- 10.2.2 Stage 2-Connectivity -- 10.2.3 Stage 3-Fog Computing -- 10.2.4 Stage 4-Data Collection -- 10.2.5 Stage 5-Data Abstraction -- 10.2.6 Stage 6-Applications -- 10.2.7 Stage 7-Cooperation and Processes -- 10.3 Vulnerabilities of IoT -- 10.3.1 The Properties and Relationships of Various IoT Networks -- 10.3.2 Device Attacks -- 10.3.3 Attacks on Network -- 10.3.4 Some Other Issues -- 10.3.4.1 Customer Delivery Value -- 10.3.4.2 Compatibility Problems With Equipment -- 10.3.4.3 Compatibility and Maintenance -- 10.3.4.4 Connectivity Issues in the Field of Data -- 10.3.4.5 Incorrect Data Collection and Difficulties -- 10.3.4.6 Security Concern -- 10.3.4.7 Problems in Computer Confidentiality -- 10.4 Challenges in Technology -- 10.4.1 Skepticism of Consumers -- 10.5 Analysis of IoT Security -- 10.5.1 Sensing Layer Security Threats -- 10.5.1.1 Node Capturing -- 10.5.1.2 Malicious Attack by Code Injection -- 10.5.1.3 Attack by Fake Data Injection -- 10.5.1.4 Sidelines Assaults -- 10.5.1.5 Attacks During Booting Process -- 10.5.2 Network Layer Safety Issues -- 10.5.2.1 Attack on Phishing Page -- 10.5.2.2 Attacks on Access -- 10.5.2.3 Attacks on Data Transmission -- 10.5.2.4 Attacks on Routing -- 10.5.3 Middleware Layer Safety Issues -- 10.5.3.1 Attack by SQL Injection -- 10.5.3.2 Attack by Signature Wrapping -- 10.5.3.3 Cloud Attack Injection with Malware -- 10.5.3.4 Cloud Flooding Attack -- 10.5.4 Gateways Safety Issues -- 10.5.4.1 On-Boarding Safely -- 10.5.4.2 Additional Interfaces -- 10.5.4.3 Encrypting End-to-End -- 10.5.5 Application Layer Safety Issues -- 10.5.5.1 Theft of Data -- 10.5.5.2 Attacks at Interruption in Service -- 10.5.5.3 Malicious Code Injection Attack. 10.6 Improvements and Enhancements Needed for IoT Applications in the Future -- 10.7 Upcoming Future Research Challenges with Intrusion Detection Systems (IDS) -- 10.8 Conclusion -- References -- Chapter 11 Potential, Scope, and Challenges of Industry 4.0 -- 11.1 Introduction -- 11.2 Key Aspects for a Successful Production -- 11.3 Opportunities with Industry 4.0 -- 11.4 Issues in Implementation of Industry 4.0 -- 11.5 Potential Tools Utilized in Industry 4.0 -- 11.6 Conclusion -- References -- Chapter 12 Industry 4.0 and Manufacturing Techniques: Opportunities and Challenges -- 12.1 Introduction -- 12.2 Changing Market Demands -- 12.2.1 Individualization -- 12.2.2 Volatility -- 12.2.3 Efficiency in Terms of Energy Resources -- 12.3 Recent Technological Advancements -- 12.4 Industrial Revolution 4.0 -- 12.5 Challenges to Industry 4.0 -- 12.6 Conclusion -- References -- Chapter 13 The Role of Multiagent System in Industry 4.0 -- 13.1 Introduction -- 13.2 Characteristics and Goals of Industry 4.0 Conception -- 13.3 Artificial Intelligence -- 13.3.1 Knowledge-Based Systems -- 13.4 Multiagent Systems -- 13.4.1 Agent Architectures -- 13.4.2 JADE -- 13.4.3 System Requirements Definition -- 13.4.4 HMI Development -- 13.5 Developing Software of Controllers Multiagent Environment Behavior Patterns -- 13.5.1 Agent Supervision -- 13.5.2 Documents Dispatching Agents -- 13.5.3 Agent Rescheduling -- 13.5.4 Agent of Executive -- 13.5.5 Primary Roles of High-Availability Agent -- 13.6 Conclusion -- References -- Chapter 14 An Overview of Enhancing Encryption Standards for Multimedia in Explainable Artificial Intelligence Using Residue Number Systems for Security -- 14.1 Introduction -- 14.2 Reviews of Related Works -- 14.3 Materials and Methods -- 14.3.1 Multimedia -- 14.3.2 Artificial Intelligence and Explainable Artificial Intelligence -- 14.3.3 Cryptography. 14.3.4 Encryption and Decryption. |
Record Nr. | UNINA-9910632498003321 |
Chatterjee Jyotir Moy | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A roadmap for enabling Industry 4.0 by artificial intelligence / / edited by Jyotir Moy Chatterjee, Harish Garg and R. N. Thakur |
Pubbl/distr/stampa | Hoboken, NJ : , : Wiley, , [2023] |
Descrizione fisica | 1 online resource (339 pages) |
Soggetto topico |
Artificial intelligence - Industrial applications
Industry 4.0 |
ISBN |
1-119-90514-1
1-119-90513-3 9781119904854 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Artificial Intelligence-The Driving Force of Industry 4.0 -- 1.1 Introduction -- 1.2 Methodology -- 1.3 Scope of AI in Global Economy and Industry 4.0 -- 1.3.1 Artificial Intelligence-Evolution and Implications -- 1.3.2 Artificial Intelligence and Industry 4.0-Investments and Returns on Economy -- 1.3.3 The Driving Forces for Industry 4.0 -- 1.4 Artificial Intelligence-Manufacturing Sector -- 1.4.1 AI Diversity-Applications to Manufacturing Sector -- 1.4.2 Future Roadmap of AI-Prospects to Manufacturing Sector in Industry 4.0 -- 1.5 Conclusion -- References -- Chapter 2 Industry 4.0, Intelligent Manufacturing, Internet of Things, Cloud Computing: An Overview -- 2.1 Introduction -- 2.2 Industrial Transformation/Value Chain Transformation -- 2.2.1 First Scenario: Reducing Waste and Increasing Productivity Using IIoT -- 2.2.2 Second Scenario: Selling Outcome (User Demand)-Based Services Using IIoT -- 2.3 IIoT Reference Architecture -- 2.4 IIoT Technical Concepts -- 2.5 IIoT and Cloud Computing -- 2.6 IIoT and Security -- References -- Chapter 3 Artificial Intelligence of Things (AIoT) and Industry 4.0-Based Supply Chain (FMCG Industry) -- 3.1 Introduction -- 3.2 Concepts -- 3.2.1 Internet of Things -- 3.2.2 The Industrial Internet of Things (IIoT) -- 3.2.3 Artificial Intelligence of Things (AIoT) -- 3.3 AIoT-Based Supply Chain -- 3.4 Conclusion -- References -- Chapter 4 Application of Artificial Intelligence in Forecasting the Demand for Supply Chains Considering Industry 4.0 -- 4.1 Introduction -- 4.2 Literature Review -- 4.2.1 Summary of the First Three Industrial Revolutions -- 4.2.2 Emergence of Industry 4.0 -- 4.2.3 Some of the Challenges of Industry 4.0 -- 4.3 Application of Artificial Intelligence in Supply Chain Demand Forecasting -- 4.4 Proposed Approach.
4.4.1 Mathematical Model -- 4.4.2 Advantages of the Proposed Model -- 4.5 Discussion and Conclusion -- References -- Chapter 5 Integrating IoT and Deep Learning-The Driving Force of Industry 4.0 -- 5.1 Motivation and Background -- 5.2 Bringing Intelligence Into IoT Devices -- 5.3 The Foundation of CR-IoT Network -- 5.3.1 Various AI Technique in CR-IoT Network -- 5.3.2 Artificial Neural Network (ANN) -- 5.3.3 Metaheuristic Technique -- 5.3.4 Rule-Based System -- 5.3.5 Ontology-Based System -- 5.3.6 Probabilistic Models -- 5.4 The Principles of Deep Learning and Its Implementation in CR-IoT Network -- 5.5 Realization of CR-IoT Network in Daily Life Examples -- 5.6 AI-Enabled Agriculture and Smart Irrigation System-Case Study -- 5.7 Conclusion -- References -- Chapter 6 A Systematic Review on Blockchain Security Technology and Big Data Employed in Cloud Environment -- 6.1 Introduction -- 6.2 Overview of Blockchain -- 6.3 Components of Blockchain -- 6.3.1 Data Block -- 6.3.2 Smart Contracts -- 6.3.3 Consensus Algorithms -- 6.4 Safety Issues in Blockchain Technology -- 6.5 Usage of Big Data Framework in Dynamic Supply Chain System -- 6.6 Machine Learning and Big Data -- 6.6.1 Overview of Shallow Models -- 6.6.1.1 Support Vector Machine (SVM) -- 6.6.1.2 Artificial Neural Network (ANN) -- 6.6.1.3 K-Nearest Neighbor (KNN) -- 6.6.1.4 Clustering -- 6.6.1.5 Decision Tree -- 6.7 Advantages of Using Big Data for Supply Chain and Blockchain Systems -- 6.7.1 Replenishment Planning -- 6.7.2 Optimizing Orders -- 6.7.3 Arranging and Organizing -- 6.7.4 Enhanced Demand Structuring -- 6.7.5 Real-Time Management of the Supply Chain -- 6.7.6 Enhanced Reaction -- 6.7.7 Planning and Growth of Inventories -- 6.8 IoT-Enabled Blockchains -- 6.8.1 Securing IoT Applications by Utilizing Blockchain -- 6.8.2 Blockchain Based on Permission -- 6.8.3 Blockchain Improvements in IoT. 6.8.3.1 Blockchain Can Store Information Coming from IoT Devices -- 6.8.3.2 Secure Data Storage with Blockchain Distribution -- 6.8.3.3 Data Encryption via Hash Key and Tested by the Miners -- 6.8.3.4 Spoofing Attacks and Data Loss Prevention -- 6.8.3.5 Unauthorized Access Prevention Using Blockchain -- 6.8.3.6 Exclusion of Centralized Cloud Servers -- 6.9 Conclusions -- References -- Chapter 7 Deep Learning Approach to Industrial Energy Sector and Energy Forecasting with Prophet -- 7.1 Introduction -- 7.2 Related Work -- 7.3 Methodology -- 7.3.1 Splitting of Data (Test/Train) -- 7.3.2 Prophet Model -- 7.3.3 Data Cleaning -- 7.3.4 Model Implementation -- 7.4 Results -- 7.4.1 Comparing Forecast to Actuals -- 7.4.2 Adding Holidays -- 7.4.3 Comparing Forecast to Actuals with the Cleaned Data -- 7.5 Conclusion and Future Scope -- References -- Chapter 8 Application of Novel AI Mechanism for Minimizing Private Data Release in Cyber-Physical Systems -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Proposed Mechanism -- 8.4 Experimental Results -- 8.5 Future Directions -- 8.6 Conclusion -- References -- Chapter 9 Environmental and Industrial Applications Using Internet of Things (IoT) -- 9.1 Introduction -- 9.2 IoT-Based Environmental Applications -- 9.3 Smart Environmental Monitoring -- 9.3.1 Air Quality Assessment -- 9.3.2 Water Quality Assessment -- 9.3.3 Soil Quality Assessment -- 9.3.4 Environmental Health-Related to COVID-19 Monitoring -- 9.4 Applications of Sensors Network in Agro-Industrial System -- 9.5 Applications of IoT in Industry -- 9.5.1 Application of IoT in the Autonomous Field -- 9.5.2 Applications of IoT in Software Industries -- 9.5.3 Sensors in Industry -- 9.6 Challenges of IoT Applications in Environmental and Industrial Applications -- 9.7 Conclusions and Recommendations -- Acknowledgments -- References. Chapter 10 An Introduction to Security in Internet of Things (IoT) and Big Data -- 10.1 Introduction -- 10.2 Allusion Design of IoT -- 10.2.1 Stage 1-Edge Tool -- 10.2.2 Stage 2-Connectivity -- 10.2.3 Stage 3-Fog Computing -- 10.2.4 Stage 4-Data Collection -- 10.2.5 Stage 5-Data Abstraction -- 10.2.6 Stage 6-Applications -- 10.2.7 Stage 7-Cooperation and Processes -- 10.3 Vulnerabilities of IoT -- 10.3.1 The Properties and Relationships of Various IoT Networks -- 10.3.2 Device Attacks -- 10.3.3 Attacks on Network -- 10.3.4 Some Other Issues -- 10.3.4.1 Customer Delivery Value -- 10.3.4.2 Compatibility Problems With Equipment -- 10.3.4.3 Compatibility and Maintenance -- 10.3.4.4 Connectivity Issues in the Field of Data -- 10.3.4.5 Incorrect Data Collection and Difficulties -- 10.3.4.6 Security Concern -- 10.3.4.7 Problems in Computer Confidentiality -- 10.4 Challenges in Technology -- 10.4.1 Skepticism of Consumers -- 10.5 Analysis of IoT Security -- 10.5.1 Sensing Layer Security Threats -- 10.5.1.1 Node Capturing -- 10.5.1.2 Malicious Attack by Code Injection -- 10.5.1.3 Attack by Fake Data Injection -- 10.5.1.4 Sidelines Assaults -- 10.5.1.5 Attacks During Booting Process -- 10.5.2 Network Layer Safety Issues -- 10.5.2.1 Attack on Phishing Page -- 10.5.2.2 Attacks on Access -- 10.5.2.3 Attacks on Data Transmission -- 10.5.2.4 Attacks on Routing -- 10.5.3 Middleware Layer Safety Issues -- 10.5.3.1 Attack by SQL Injection -- 10.5.3.2 Attack by Signature Wrapping -- 10.5.3.3 Cloud Attack Injection with Malware -- 10.5.3.4 Cloud Flooding Attack -- 10.5.4 Gateways Safety Issues -- 10.5.4.1 On-Boarding Safely -- 10.5.4.2 Additional Interfaces -- 10.5.4.3 Encrypting End-to-End -- 10.5.5 Application Layer Safety Issues -- 10.5.5.1 Theft of Data -- 10.5.5.2 Attacks at Interruption in Service -- 10.5.5.3 Malicious Code Injection Attack. 10.6 Improvements and Enhancements Needed for IoT Applications in the Future -- 10.7 Upcoming Future Research Challenges with Intrusion Detection Systems (IDS) -- 10.8 Conclusion -- References -- Chapter 11 Potential, Scope, and Challenges of Industry 4.0 -- 11.1 Introduction -- 11.2 Key Aspects for a Successful Production -- 11.3 Opportunities with Industry 4.0 -- 11.4 Issues in Implementation of Industry 4.0 -- 11.5 Potential Tools Utilized in Industry 4.0 -- 11.6 Conclusion -- References -- Chapter 12 Industry 4.0 and Manufacturing Techniques: Opportunities and Challenges -- 12.1 Introduction -- 12.2 Changing Market Demands -- 12.2.1 Individualization -- 12.2.2 Volatility -- 12.2.3 Efficiency in Terms of Energy Resources -- 12.3 Recent Technological Advancements -- 12.4 Industrial Revolution 4.0 -- 12.5 Challenges to Industry 4.0 -- 12.6 Conclusion -- References -- Chapter 13 The Role of Multiagent System in Industry 4.0 -- 13.1 Introduction -- 13.2 Characteristics and Goals of Industry 4.0 Conception -- 13.3 Artificial Intelligence -- 13.3.1 Knowledge-Based Systems -- 13.4 Multiagent Systems -- 13.4.1 Agent Architectures -- 13.4.2 JADE -- 13.4.3 System Requirements Definition -- 13.4.4 HMI Development -- 13.5 Developing Software of Controllers Multiagent Environment Behavior Patterns -- 13.5.1 Agent Supervision -- 13.5.2 Documents Dispatching Agents -- 13.5.3 Agent Rescheduling -- 13.5.4 Agent of Executive -- 13.5.5 Primary Roles of High-Availability Agent -- 13.6 Conclusion -- References -- Chapter 14 An Overview of Enhancing Encryption Standards for Multimedia in Explainable Artificial Intelligence Using Residue Number Systems for Security -- 14.1 Introduction -- 14.2 Reviews of Related Works -- 14.3 Materials and Methods -- 14.3.1 Multimedia -- 14.3.2 Artificial Intelligence and Explainable Artificial Intelligence -- 14.3.3 Cryptography. 14.3.4 Encryption and Decryption. |
Record Nr. | UNINA-9910829846403321 |
Hoboken, NJ : , : Wiley, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|