Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems / / Wilfrid Gangbo, Hwa Kil Kim, Tommaso Pacini |
Autore | Gangbo Wilfrid |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2010 |
Descrizione fisica | 1 online resource (77 p.) |
Disciplina | 515/.39 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Differential forms
Hamiltonian systems Infinite-dimensional manifolds |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0610-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. The topology on M and a differential calculus of curves""; ""2.1. The space of distributions""; ""2.2. The topology on M""; ""2.3. Tangent spaces and the divergence operator""; ""2.4. Analytic justification for the tangent spaces""; ""Chapter 3. The calculus of curves, revisited""; ""3.1. Embedding the geometry of RD into M""; ""3.2. The intrinsic geometry of M""; ""3.3. Embedding the geometry of M into (Cc)*""; ""3.4. Further comments""; ""Chapter 4. Tangent and cotangent bundles""
""4.1. Push-forward operations on M and TM""""4.2. Differential forms on M""; ""4.3. Discussion""; ""Chapter 5. Calculus of pseudo differential 1-forms""; ""5.1. Green's formula for smooth surfaces and 1-forms""; ""5.2. Regularity and differentiability of pseudo 1-forms""; ""5.3. Regular forms and absolutely continuous curves""; ""5.4. Green's formula for annuli""; ""5.5. Example: 1-forms on the space of discrete measures""; ""5.6. Discussion""; ""Chapter 6. A symplectic foliation of M""; ""6.1. The group of Hamiltonian diffeomorphisms""; ""6.2. A symplectic foliation of M"" ""6.3. Algebraic properties of the symplectic distribution""""Chapter 7. The symplectic foliation as a Poisson structure""; ""7.1. Review of Poisson geometry""; ""7.2. The symplectic foliation of M, revisited""; ""Appendix A. Review of relevant notions of Differential Geometry""; ""A.1. Calculus of vector fields and differential forms""; ""A.2. Lie groups and group actions""; ""A.3. Cohomology and invariant cohomology""; ""A.4. The group of diffeomorphisms""; ""Bibliography"" |
Record Nr. | UNINA-9910481052303321 |
Gangbo Wilfrid | ||
Providence, Rhode Island : , : American Mathematical Society, , 2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems / / Wilfrid Gangbo, Hwa Kil Kim, Tommaso Pacini |
Autore | Gangbo Wilfrid |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2010 |
Descrizione fisica | 1 online resource (77 p.) |
Disciplina | 515/.39 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Differential forms
Hamiltonian systems Infinite-dimensional manifolds |
ISBN | 1-4704-0610-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. The topology on M and a differential calculus of curves""; ""2.1. The space of distributions""; ""2.2. The topology on M""; ""2.3. Tangent spaces and the divergence operator""; ""2.4. Analytic justification for the tangent spaces""; ""Chapter 3. The calculus of curves, revisited""; ""3.1. Embedding the geometry of RD into M""; ""3.2. The intrinsic geometry of M""; ""3.3. Embedding the geometry of M into (Cc)*""; ""3.4. Further comments""; ""Chapter 4. Tangent and cotangent bundles""
""4.1. Push-forward operations on M and TM""""4.2. Differential forms on M""; ""4.3. Discussion""; ""Chapter 5. Calculus of pseudo differential 1-forms""; ""5.1. Green's formula for smooth surfaces and 1-forms""; ""5.2. Regularity and differentiability of pseudo 1-forms""; ""5.3. Regular forms and absolutely continuous curves""; ""5.4. Green's formula for annuli""; ""5.5. Example: 1-forms on the space of discrete measures""; ""5.6. Discussion""; ""Chapter 6. A symplectic foliation of M""; ""6.1. The group of Hamiltonian diffeomorphisms""; ""6.2. A symplectic foliation of M"" ""6.3. Algebraic properties of the symplectic distribution""""Chapter 7. The symplectic foliation as a Poisson structure""; ""7.1. Review of Poisson geometry""; ""7.2. The symplectic foliation of M, revisited""; ""Appendix A. Review of relevant notions of Differential Geometry""; ""A.1. Calculus of vector fields and differential forms""; ""A.2. Lie groups and group actions""; ""A.3. Cohomology and invariant cohomology""; ""A.4. The group of diffeomorphisms""; ""Bibliography"" |
Record Nr. | UNINA-9910788866103321 |
Gangbo Wilfrid | ||
Providence, Rhode Island : , : American Mathematical Society, , 2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems / / Wilfrid Gangbo, Hwa Kil Kim, Tommaso Pacini |
Autore | Gangbo Wilfrid |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2010 |
Descrizione fisica | 1 online resource (77 p.) |
Disciplina | 515/.39 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Differential forms
Hamiltonian systems Infinite-dimensional manifolds |
ISBN | 1-4704-0610-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. The topology on M and a differential calculus of curves""; ""2.1. The space of distributions""; ""2.2. The topology on M""; ""2.3. Tangent spaces and the divergence operator""; ""2.4. Analytic justification for the tangent spaces""; ""Chapter 3. The calculus of curves, revisited""; ""3.1. Embedding the geometry of RD into M""; ""3.2. The intrinsic geometry of M""; ""3.3. Embedding the geometry of M into (Cc)*""; ""3.4. Further comments""; ""Chapter 4. Tangent and cotangent bundles""
""4.1. Push-forward operations on M and TM""""4.2. Differential forms on M""; ""4.3. Discussion""; ""Chapter 5. Calculus of pseudo differential 1-forms""; ""5.1. Green's formula for smooth surfaces and 1-forms""; ""5.2. Regularity and differentiability of pseudo 1-forms""; ""5.3. Regular forms and absolutely continuous curves""; ""5.4. Green's formula for annuli""; ""5.5. Example: 1-forms on the space of discrete measures""; ""5.6. Discussion""; ""Chapter 6. A symplectic foliation of M""; ""6.1. The group of Hamiltonian diffeomorphisms""; ""6.2. A symplectic foliation of M"" ""6.3. Algebraic properties of the symplectic distribution""""Chapter 7. The symplectic foliation as a Poisson structure""; ""7.1. Review of Poisson geometry""; ""7.2. The symplectic foliation of M, revisited""; ""Appendix A. Review of relevant notions of Differential Geometry""; ""A.1. Calculus of vector fields and differential forms""; ""A.2. Lie groups and group actions""; ""A.3. Cohomology and invariant cohomology""; ""A.4. The group of diffeomorphisms""; ""Bibliography"" |
Record Nr. | UNINA-9910827648403321 |
Gangbo Wilfrid | ||
Providence, Rhode Island : , : American Mathematical Society, , 2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|