top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Data Mining and Applications [[electronic resource] ] : 5th International Conference, ADMA 2009, Chengdu, China, August 17-19, 2009, Proceedings / / edited by Ronghuai Huang, Qiang Yang, Jian Pei, João Gama, Xiaofeng Meng, Xue Li
Advanced Data Mining and Applications [[electronic resource] ] : 5th International Conference, ADMA 2009, Chengdu, China, August 17-19, 2009, Proceedings / / edited by Ronghuai Huang, Qiang Yang, Jian Pei, João Gama, Xiaofeng Meng, Xue Li
Edizione [1st ed. 2009.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009
Descrizione fisica 1 online resource (XXI, 807 p.)
Disciplina 004n/a
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Data mining
Information storage and retrieval
Computers
Application software
Pattern recognition
Artificial intelligence
Data Mining and Knowledge Discovery
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl. Internet)
Pattern Recognition
Artificial Intelligence
Soggetto genere / forma Kongress.
Peking (2009)
ISBN 1-280-38316-X
9786613561084
3-642-03348-2
Classificazione DAT 600f
DAT 703f
DAT 825f
SS 4800
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Keynotes -- Regular Papers -- Short Papers.
Record Nr. UNISA-996465765803316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in Intelligent Data Analysis X [[electronic resource] ] : 10th International Symposium, IDA 2011, Porto, Portugal, October 29-31, 2011, Proceedings / / edited by João Gama, Elizabeth Bradley, Jaakko Hollmen
Advances in Intelligent Data Analysis X [[electronic resource] ] : 10th International Symposium, IDA 2011, Porto, Portugal, October 29-31, 2011, Proceedings / / edited by João Gama, Elizabeth Bradley, Jaakko Hollmen
Edizione [1st ed. 2011.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Descrizione fisica 1 online resource (XIV, 425 p. 144 illus.)
Disciplina 005.74
Collana Information Systems and Applications, incl. Internet/Web, and HCI
Soggetto topico Database management
Application software
Artificial intelligence
Information storage and retrieval
Algorithms
Data mining
Database Management
Information Systems Applications (incl. Internet)
Artificial Intelligence
Information Storage and Retrieval
Algorithm Analysis and Problem Complexity
Data Mining and Knowledge Discovery
ISBN 3-642-24800-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996465963203316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Discovery Science [[electronic resource] ] : 26th International Conference, DS 2023, Porto, Portugal, October 9–11, 2023, Proceedings / / edited by Albert Bifet, Ana Carolina Lorena, Rita P. Ribeiro, João Gama, Pedro H. Abreu
Discovery Science [[electronic resource] ] : 26th International Conference, DS 2023, Porto, Portugal, October 9–11, 2023, Proceedings / / edited by Albert Bifet, Ana Carolina Lorena, Rita P. Ribeiro, João Gama, Pedro H. Abreu
Autore Bifet Albert
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (725 pages)
Disciplina 006.3
Altri autori (Persone) LorenaAna Carolina
RibeiroRita P
GamaJoão
AbreuPedro H
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Education - Data processing
Data mining
Application software
Social sciences - Data processing
Image processing - Digital techniques
Computer vision
Artificial Intelligence
Computers and Education
Data Mining and Knowledge Discovery
Computer and Information Systems Applications
Computer Application in Social and Behavioral Sciences
Computer Imaging, Vision, Pattern Recognition and Graphics
ISBN 3-031-45275-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Ensembles of classifiers and quantifiers with data fusion for Quantification Learning -- Exploring the Intricacies of Neural Network Optimization -- Exploring the Reduction of Configuration Spaces of Workflows -- iSOUP-SymRF: Symbolic feature ranking with random forests in online multi-target regression -- Knowledge-Guided Additive Modeling For Supervised Regression -- Audience Prediction for Game Streaming Channels Based on Vectorization of User Comments -- From Tweets to Stance: An Unsupervised Framework for User Stance Detection on Twitter -- GLORIA: A Graph Convolutional Network-based Approach for Review Spam Detection -- Unmasking COVID-19 False Information on Twitter: a Topic-based Approach with BERT -- Unsupervised Key-Phrase Extraction from Long Texts with Multilingual Sentence Transformers -- Counterfactuals Explanations for Outliers via Subspaces Density Contrastive Loss -- Explainable Spatio-Temporal Graph Modeling -- Probabilistic Scoring Lists for Interpretable Machine Learning -- Refining Temporal Visualizations Using the Directional Coherence Loss -- Semantic enrichment of explanations of AI models for healthcare -- Text to Time Series Representations: Towards Interpretable Predictive Models -- Enhancing intra-modal similarity in a cross-modal triplet loss -- Exploring the Potential of Optimal Active Learning via a Non-myopic Oracle Policy -- Extrapolation is Not the Same as Interpolation -- Gene Interactions in Survival Data Analysis: A Data-driven Approach Using Restricted Mean Survival Time and Literature Mining -- Joining Imputation and Active Feature Acquisition for Cost Saving on Data Streams with Missing Features -- EXPHLOT: EXplainable Privacy assessment for Human LOcation Trajectories -- Fairness-aware Mixture of Experts with Interpretability Budgets -- GenFair: A Genetic Fairness-Enhancing Data Generation Framework -- Privacy-Preserving Learning of Random Forests Without Revealing the Trees -- Unlearning Spurious Correlations in Chest X-ray Classification -- Explaining the Chronological Attribution of Greek Papyri Images -- Leveraging the Spatiotemporal Analysis of Meisho-e Landscapes -- Predictive Inference Model of the Physical Environment that emulates Predictive Coding -- Transferring a Learned Qualitative Cart-Pole Control Model to Uneven Terrains -- Which Way to Go - Finding Frequent Trajectories Through Clustering -- Boosting-based Construction of BDDs for Linear Threshold Functions and Its Application to Verification of Neural Networks -- Interpretable Data Partitioning through Tree-based Clustering Methods -- Jaccard-constrained dense subgraph discovery -- RIMBO - an ontology for model revision databases -- Unsupervised Graph Neural Networks for Source Code Similarity Detection -- A Universal Approach for Post-Correcting Time Series -- Forecasts: Reducing Long-term Errors In Multistep Scenarios -- Explainable Deep Learning-based Solar Flare Prediction with post hoc Attention for Operational Forecasting -- Pseudo Session-Based Recommendation with Hierarchical Embedding and Session Attributes -- Chance and the predictive limit in basketball (both college and professional) -- Exploring Label Correlations for Quantification of ICD Codes -- LGEM+: a first-order logic framework for automated improvement of metabolic network models through abduction -- Predicting age from human lung tissue through multi-modal data integration -- Error Analysis on Industry Data:Using Weak Segment Detection for Local Model Agnostic Prediction Intervals -- HEART: Heterogeneous Log Anomaly Detection using Robust Transformers -- Multi-Kernel Time Series Outlier Detection -- Toward Streamlining the Evaluation of Novelty Detection in Data Streams.
Record Nr. UNINA-9910747595603321
Bifet Albert  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Discovery Science [[electronic resource] ] : 26th International Conference, DS 2023, Porto, Portugal, October 9–11, 2023, Proceedings / / edited by Albert Bifet, Ana Carolina Lorena, Rita P. Ribeiro, João Gama, Pedro H. Abreu
Discovery Science [[electronic resource] ] : 26th International Conference, DS 2023, Porto, Portugal, October 9–11, 2023, Proceedings / / edited by Albert Bifet, Ana Carolina Lorena, Rita P. Ribeiro, João Gama, Pedro H. Abreu
Autore Bifet Albert
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (725 pages)
Disciplina 006.3
Altri autori (Persone) LorenaAna Carolina
RibeiroRita P
GamaJoão
AbreuPedro H
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Education - Data processing
Data mining
Application software
Social sciences - Data processing
Image processing - Digital techniques
Computer vision
Artificial Intelligence
Computers and Education
Data Mining and Knowledge Discovery
Computer and Information Systems Applications
Computer Application in Social and Behavioral Sciences
Computer Imaging, Vision, Pattern Recognition and Graphics
ISBN 3-031-45275-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Ensembles of classifiers and quantifiers with data fusion for Quantification Learning -- Exploring the Intricacies of Neural Network Optimization -- Exploring the Reduction of Configuration Spaces of Workflows -- iSOUP-SymRF: Symbolic feature ranking with random forests in online multi-target regression -- Knowledge-Guided Additive Modeling For Supervised Regression -- Audience Prediction for Game Streaming Channels Based on Vectorization of User Comments -- From Tweets to Stance: An Unsupervised Framework for User Stance Detection on Twitter -- GLORIA: A Graph Convolutional Network-based Approach for Review Spam Detection -- Unmasking COVID-19 False Information on Twitter: a Topic-based Approach with BERT -- Unsupervised Key-Phrase Extraction from Long Texts with Multilingual Sentence Transformers -- Counterfactuals Explanations for Outliers via Subspaces Density Contrastive Loss -- Explainable Spatio-Temporal Graph Modeling -- Probabilistic Scoring Lists for Interpretable Machine Learning -- Refining Temporal Visualizations Using the Directional Coherence Loss -- Semantic enrichment of explanations of AI models for healthcare -- Text to Time Series Representations: Towards Interpretable Predictive Models -- Enhancing intra-modal similarity in a cross-modal triplet loss -- Exploring the Potential of Optimal Active Learning via a Non-myopic Oracle Policy -- Extrapolation is Not the Same as Interpolation -- Gene Interactions in Survival Data Analysis: A Data-driven Approach Using Restricted Mean Survival Time and Literature Mining -- Joining Imputation and Active Feature Acquisition for Cost Saving on Data Streams with Missing Features -- EXPHLOT: EXplainable Privacy assessment for Human LOcation Trajectories -- Fairness-aware Mixture of Experts with Interpretability Budgets -- GenFair: A Genetic Fairness-Enhancing Data Generation Framework -- Privacy-Preserving Learning of Random Forests Without Revealing the Trees -- Unlearning Spurious Correlations in Chest X-ray Classification -- Explaining the Chronological Attribution of Greek Papyri Images -- Leveraging the Spatiotemporal Analysis of Meisho-e Landscapes -- Predictive Inference Model of the Physical Environment that emulates Predictive Coding -- Transferring a Learned Qualitative Cart-Pole Control Model to Uneven Terrains -- Which Way to Go - Finding Frequent Trajectories Through Clustering -- Boosting-based Construction of BDDs for Linear Threshold Functions and Its Application to Verification of Neural Networks -- Interpretable Data Partitioning through Tree-based Clustering Methods -- Jaccard-constrained dense subgraph discovery -- RIMBO - an ontology for model revision databases -- Unsupervised Graph Neural Networks for Source Code Similarity Detection -- A Universal Approach for Post-Correcting Time Series -- Forecasts: Reducing Long-term Errors In Multistep Scenarios -- Explainable Deep Learning-based Solar Flare Prediction with post hoc Attention for Operational Forecasting -- Pseudo Session-Based Recommendation with Hierarchical Embedding and Session Attributes -- Chance and the predictive limit in basketball (both college and professional) -- Exploring Label Correlations for Quantification of ICD Codes -- LGEM+: a first-order logic framework for automated improvement of metabolic network models through abduction -- Predicting age from human lung tissue through multi-modal data integration -- Error Analysis on Industry Data:Using Weak Segment Detection for Local Model Agnostic Prediction Intervals -- HEART: Heterogeneous Log Anomaly Detection using Robust Transformers -- Multi-Kernel Time Series Outlier Detection -- Toward Streamlining the Evaluation of Novelty Detection in Data Streams.
Record Nr. UNISA-996558470803316
Bifet Albert  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Discovery Science [[electronic resource] ] : 12th International Conference, DS 2009, Porto, Portugal, October 3-5, 2009 / / edited by João Gama, Vitor Santos Costa, Alipio Jorge, Pavel Brazdil
Discovery Science [[electronic resource] ] : 12th International Conference, DS 2009, Porto, Portugal, October 3-5, 2009 / / edited by João Gama, Vitor Santos Costa, Alipio Jorge, Pavel Brazdil
Edizione [1st ed. 2009.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009
Descrizione fisica 1 online resource (XIII, 474 p.)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Computer communication systems
Data mining
Information storage and retrieval
Application software
User interfaces (Computer systems)
Artificial Intelligence
Computer Communication Networks
Data Mining and Knowledge Discovery
Information Storage and Retrieval
Information Systems Applications (incl. Internet)
User Interfaces and Human Computer Interaction
ISBN 3-642-04747-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Inference and Learning in Planning (Extended Abstract) -- Mining Heterogeneous Information Networks by Exploring the Power of Links -- Learning on the Web -- Learning and Domain Adaptation -- The Two Faces of Active Learning -- An Iterative Learning Algorithm for Within-Network Regression in the Transductive Setting -- Detecting New Kinds of Patient Safety Incidents -- Using Data Mining for Wine Quality Assessment -- MICCLLR: Multiple-Instance Learning Using Class Conditional Log Likelihood Ratio -- On the Complexity of Constraint-Based Theory Extraction -- Algorithm and Feature Selection for VegOut: A Vegetation Condition Prediction Tool -- Regression Trees from Data Streams with Drift Detection -- Mining Frequent Bipartite Episode from Event Sequences -- CHRONICLE: A Two-Stage Density-Based Clustering Algorithm for Dynamic Networks -- Learning Large Margin First Order Decision Lists for Multi-Class Classification -- Centrality Measures from Complex Networks in Active Learning -- Player Modeling for Intelligent Difficulty Adjustment -- Unsupervised Fuzzy Clustering for the Segmentation and Annotation of Upwelling Regions in Sea Surface Temperature Images -- Discovering the Structures of Open Source Programs from Their Developer Mailing Lists -- A Comparison of Community Detection Algorithms on Artificial Networks -- Towards an Ontology of Data Mining Investigations -- OMFP: An Approach for Online Mass Flow Prediction in CFB Boilers -- C-DenStream: Using Domain Knowledge on a Data Stream -- Discovering Influential Nodes for SIS Models in Social Networks -- An Empirical Comparison of Probability Estimation Techniques for Probabilistic Rules -- Precision and Recall for Regression -- Mining Local Correlation Patterns in Sets of Sequences -- Subspace Discovery for Promotion: A Cell Clustering Approach -- Contrasting Sequence Groups by Emerging Sequences -- A Sliding Window Algorithm for Relational Frequent Patterns Mining from Data Streams -- A Hybrid Collaborative Filtering System for Contextual Recommendations in Social Networks -- Linear Programming Boosting by Column and Row Generation -- Discovering Abstract Concepts to Aid Cross-Map Transfer for a Learning Agent -- A Dialectic Approach to Problem-Solving -- Gene Functional Annotation with Dynamic Hierarchical Classification Guided by Orthologs -- Stream Clustering of Growing Objects -- Finding the k-Most Abnormal Subgraphs from a Single Graph -- Latent Topic Extraction from Relational Table for Record Matching -- Computing a Comprehensible Model for Spam Filtering -- Better Decomposition Heuristics for the Maximum-Weight Connected Graph Problem Using Betweenness Centrality.
Record Nr. UNISA-996465386403316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
ECML PKDD 2018 Workshops : DMLE 2018 and IoTStream 2018, Dublin, Ireland, September 10-14, 2018, Revised Selected Papers / / edited by Anna Monreale, Carlos Alzate, Michael Kamp, Yamuna Krishnamurthy, Daniel Paurat, Moamar Sayed-Mouchaweh, Albert Bifet, João Gama, Rita P. Ribeiro
ECML PKDD 2018 Workshops : DMLE 2018 and IoTStream 2018, Dublin, Ireland, September 10-14, 2018, Revised Selected Papers / / edited by Anna Monreale, Carlos Alzate, Michael Kamp, Yamuna Krishnamurthy, Daniel Paurat, Moamar Sayed-Mouchaweh, Albert Bifet, João Gama, Rita P. Ribeiro
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (IX, 127 p. 43 illus., 27 illus. in color.)
Disciplina 006.31
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Data mining
Information storage and retrieval
Computer communication systems
Artificial Intelligence
Data Mining and Knowledge Discovery
Information Storage and Retrieval
Computer Communication Networks
ISBN 3-030-14880-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910337569303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Knowledge Discovery from Sensor Data [[electronic resource] ] : Second International Workshop, Sensor-KDD 2008, Las Vegas, NV, USA, August 24-27, 2008, Revised Selected Papers / / edited by Mohamed Medhat Gaber, Ranga Raju Vatsavai, Olufemi A. Omitaomu, João Gama, Nitesh V. Chawla, Auroop R. Ganguly
Knowledge Discovery from Sensor Data [[electronic resource] ] : Second International Workshop, Sensor-KDD 2008, Las Vegas, NV, USA, August 24-27, 2008, Revised Selected Papers / / edited by Mohamed Medhat Gaber, Ranga Raju Vatsavai, Olufemi A. Omitaomu, João Gama, Nitesh V. Chawla, Auroop R. Ganguly
Edizione [1st ed. 2010.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010
Descrizione fisica 1 online resource (IX, 227 p. 110 illus.)
Disciplina 025.04
Collana Information Systems and Applications, incl. Internet/Web, and HCI
Soggetto topico Xarxes de sensors
Intel·ligència artificial
Information storage and retrieval
Computer communication systems
Database management
Data mining
Pattern recognition
Information Storage and Retrieval
Computer Communication Networks
Database Management
Data Mining and Knowledge Discovery
Pattern Recognition
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 1-280-38628-2
9786613564207
3-642-12519-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Data Mining for Diagnostic Debugging in Sensor Networks: Preliminary Evidence and Lessons Learned -- Monitoring Incremental Histogram Distribution for Change Detection in Data Streams -- Situation-Aware Adaptive Visualization for Sensory Data Stream Mining -- Unsupervised Plan Detection with Factor Graphs -- WiFi Miner: An Online Apriori-Infrequent Based Wireless Intrusion System -- Probabilistic Analysis of a Large-Scale Urban Traffic Sensor Data Set -- Spatio-temporal Outlier Detection in Precipitation Data -- Large-Scale Inference of Network-Service Disruption upon Natural Disasters -- An Adaptive Sensor Mining Framework for Pervasive Computing Applications -- A Simple Dense Pixel Visualization for Mobile Sensor Data Mining -- Incremental Anomaly Detection Approach for Characterizing Unusual Profiles -- Spatiotemporal Neighborhood Discovery for Sensor Data.
Record Nr. UNISA-996465607203316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine Learning and Knowledge Discovery in Databases [[electronic resource] ] : European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part II / / edited by Annalisa Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, João Gama, Alípio Jorge, Carlos Soares
Machine Learning and Knowledge Discovery in Databases [[electronic resource] ] : European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part II / / edited by Annalisa Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, João Gama, Alípio Jorge, Carlos Soares
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (XLII, 773 p. 198 illus.)
Disciplina 006.312
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Data mining
Artificial intelligence
Pattern recognition
Information storage and retrieval
Database management
Application software
Data Mining and Knowledge Discovery
Artificial Intelligence
Pattern Recognition
Information Storage and Retrieval
Database Management
Information Systems Applications (incl. Internet)
ISBN 3-319-23525-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996200359603316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine Learning and Knowledge Discovery in Databases [[electronic resource] ] : European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I / / edited by Annalisa Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, Carlos Soares, João Gama, Alípio Jorge
Machine Learning and Knowledge Discovery in Databases [[electronic resource] ] : European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I / / edited by Annalisa Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, Carlos Soares, João Gama, Alípio Jorge
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (LVIII, 709 p. 160 illus.)
Disciplina 006.31
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Data mining
Artificial intelligence
Pattern recognition
Information storage and retrieval
Database management
Application software
Data Mining and Knowledge Discovery
Artificial Intelligence
Pattern Recognition
Information Storage and Retrieval
Database Management
Information Systems Applications (incl. Internet)
ISBN 3-319-23528-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Abstracts of Invited Talks -- Towards Declarative, Domain-OrientedData Analysis -- Sum-Product Networks: Deep Modelswith Tractable Inference -- Mining Online Networks and Communities -- Learning to Acquire Knowledge in a SmartGrid Environment -- Untangling the Web's Invisible Net -- Towards a Digital Time Machine Fueled by BigData and Social Mining -- Abstracts of Journal Track Articles -- Contents - Part I -- Contents - Part II -- Contents - Part III -- Research Track Classification, Regression and Supervised Learning -- Data Split Strategiesfor Evolving Predictive Models -- 1 Introduction -- 2 Data Splits for Model Fitting, Selection,and Assessment -- 3 Issues with Evolving Models -- 4 Data Splits for Evolving Models -- 4.1 Parallel Dump Workflow -- 4.2 Serial Waterfall Workflow -- 4.3 Hybrid Workflow -- 5 Bias Due to Test Set Reuse -- 6 Illustration on Synthetic Data -- 7 Case Study: Paraphrase Detection -- 8 Related Work -- 9 Conclusions -- A Appendix: Bias Due to Test Set Reuse -- References -- Discriminative Interpolation for Classification of Functional Data -- 1 Introduction -- 2 Function Representations and Wavelets -- 3 Related Work -- 4 Classification by Discriminative Interpolation -- 4.1 Training Formulation -- 4.2 Testing Formulation -- 5 Experiments -- 6 Conclusion -- References -- Fast Label Embeddings via Randomized Linear Algebra -- 1 Introduction -- 1.1 Contributions -- 2 Algorithm Derivation -- 2.1 Notation -- 2.2 Background -- 2.3 Rank-Constrained Estimation and Embedding -- 2.4 Rembrandt -- 3 Related Work -- 4 Experiments -- 4.1 ALOI -- 4.2 ODP -- 4.3 LSHTC -- 5 Discussion -- References -- Maximum Entropy Linear Manifold for Learning Discriminative Low-Dimensional Representation -- 1 Introduction -- 2 General Idea -- 3 Theory -- 4 Closed form Solution for Objective and its Gradient.
5 Experiments -- 6 Conclusions -- References -- Novel Decompositions of Proper Scoring Rules for Classification: Score Adjustment as Precursor to Calibration -- 1 Introduction -- 2 Proper Scoring Rules -- 2.1 Scoring Rules -- 2.2 Divergence, Entropy and Properness -- 2.3 Expected Loss and Empirical Loss -- 3 Decompositions with Ideal Scores and Calibrated Scores -- 3.1 Ideal Scores Q and the Decomposition L=EL+IL -- 3.2 Calibrated Scores C and the Decomposition L=CL+RL -- 4 Adjusted Scores A and the Decomposition L=AL+PL -- 4.1 Adjustment -- 4.2 The Right Adjustment Procedure Guarantees Decreased Loss -- 5 Decomposition Theorems and Terminology -- 5.1 Decompositions with S,C,Q,Y -- 5.2 Decompositions with S,A,C,Q,Y and Terminology -- 6 Algorithms and Experiments -- 7 Related Work -- 8 Conclusions -- References -- Parameter Learning of Bayesian Network Classifiers Under Computational Constraints -- 1 Introduction -- 2 Related Work -- 3 Background and Notation -- 4 Algorithms for Online Learning of Reduced-Precision Parameters -- 4.1 Learning Maximum Likelihood Parameters -- 4.2 Learning Maximum Margin Parameters -- 5 Experiments -- 5.1 Datasets -- 5.2 Results -- 6 Discussions -- References -- Predicting Unseen Labels Using Label Hierarchies in Large-Scale Multi-label Learning -- 1 Introduction -- 2 Multi-label Classification -- 3 Model Description -- 3.1 Joint Space Embeddings -- 3.2 Learning with Hierarchical Structures Over Labels -- 3.3 Efficient Gradients Computation -- 3.4 Label Ranking to Binary Predictions -- 4 Experimental Setup -- 5 Experimental Results -- 5.1 Learning All Labels Together -- 5.2 Learning to Predict Unseen Labels -- 6 Pretrained Label Embeddings as Good Initial Guess -- 6.1 Understanding Label Embeddings -- 6.2 Results -- 7 Conclusions -- Regression with Linear Factored Functions -- 1 Introduction -- 1.1 Kernel Regression.
1.2 Factored Basis Functions -- 2 Regression -- 3 Linear Factored Functions -- 3.1 Function Class -- 3.2 Constraints -- 3.3 Regularization -- 3.4 Optimization -- 4 Empirical Evaluation -- 4.1 Demonstration -- 4.2 Evaluation -- 5 Discussion -- Appendix A LFF Definition and Properties -- Appendix B Inner Loop Derivation -- Appendix C Proofs of the Propositions -- References -- Ridge Regression, Hubness, and Zero-Shot Learning -- 1 Introduction -- 1.1 Background -- 1.2 Research Objective and Contributions -- 2 Zero-Shot Learning as a Regression Problem -- 3 Hubness Phenomenon and the Variance of Data -- 4 Hubness in Regression-Based Zero-Shot Learning -- 4.1 Shrinkage of Projected Objects -- 4.2 Influence of Shrinkage on Nearest Neighbor Search -- 4.3 Additional Argument for Placing Target Objects Closer to the Origin -- 4.4 Summary of the Proposed Approach -- 5 Related Work -- 6 Experiments -- 6.1 Experimental Setups -- 6.2 Task Descriptions and Datasets -- 6.3 Experimental Results -- 7 Conclusion -- References -- Solving Prediction Games with Parallel Batch Gradient Descent -- 1 Introduction -- 2 Problem Setting and Data Transformation Model -- 3 Analysis of Equilibrium Points -- 3.1 Existence of Equilibrium Points -- 3.2 Uniqueness of Equilibrium Points -- 4 Finding the Unique Equilibrium Point Efficiently -- 4.1 Inexact Line Search -- 4.2 Arrow-Hurwicz-Uzawa Method -- 4.3 Parallelized Methods -- 5 Experimental Results -- 5.1 Reference Methods -- 5.2 Performance of the Parameterized Transformation Model -- 5.3 Optimization Algorithms -- 5.4 Parallelized Models -- 6 Conclusion -- References -- Structured Regularizer for Neural Higher-Order Sequence Models -- 1 Introduction -- 2 Related Work -- 3 Higher-Order Conditional Random Fields -- 3.1 Parameter Learning -- 3.2 Forward Algorithm for 2nd-Order CRFs -- 4 Structured Regularizer -- 5 Experiments.
5.1 TIMIT Data Set -- 5.2 Experimental Setup -- 5.3 Labeling Results Using Only MLP Networks -- 5.4 Labeling Results Using LC-CRFs with Linear or Neural Higher-Order Factors -- 6 Conclusion -- References -- Versatile Decision Trees for Learning Over Multiple Contexts -- 1 Introduction -- 2 Dataset Shift -- 3 Versatile Decision Trees -- 3.1 Constructing Splits Using Percentiles -- 3.2 Adapting for Output Shifts -- 3.3 Versatile Model for Decision Trees -- 4 Experimental Results -- 4.1 Generating Synthetic Shifts -- 4.2 Results of the Synthetic Shifts -- 4.3 Results on Non-synthetic Shifts -- 5 Conclusion -- References -- When is Undersampling Effective in Unbalanced Classification Tasks? -- 1 Introduction -- 2 The Warping Effect of Undersampling on the Posterior Probability -- 3 The Interaction Between Warping and Variance of the Estimator -- 4 Experimental Validation -- 4.1 Synthetic Datasets -- 4.2 Real Datasets -- 5 Conclusion -- References -- Clustering and Unsupervised Learning -- A Kernel-Learning Approach to Semi-supervised Clustering with Relative Distance Comparisons -- 1 Introduction -- 2 Related Work -- 3 Kernel Learning with Relative Distances -- 3.1 Basic Definitions -- 3.2 Relative Distance Constraints -- 3.3 Extension to a Kernel Space -- 3.4 Log Determinant Divergence for Kernel Learning -- 3.5 Problem Definition -- 4 Semi-supervised Kernel Learning -- 4.1 Bregman Projections for Constrained Optimization -- 4.2 Semi-supervised Kernel Learning with Relative Comparisons -- Selecting the Bandwidth Parameter. -- Semi-Supervised Kernel Learning with Relative Comparisons. -- Clustering Method. -- 5 Experimental Results -- 5.1 Datasets -- 5.2 Relative Constraints vs. Pairwise Constraints -- 5.3 Multi-resolution Analysis -- 5.4 Generalization Performance -- 5.5 Effect of Equality Constraints -- 6 Conclusion -- References.
Bayesian Active Clustering with Pairwise Constraints -- 1 Introduction -- 2 Problem Statement -- 3 Bayesian Active Clustering -- 3.1 The Bayesian Clustering Model -- Marginalization of Cluster Labels. -- 3.2 Active Query Selection -- Selection Criteria. -- Computing the Selection Objectives. -- 3.3 The Sequential MCMC Sampling of W -- 3.4 Find the MAP Solution -- 4 Experiments -- 4.1 Dataset and Setup -- 4.2 Effectiveness of the Proposed Clustering Model -- 4.3 Effectiveness of the Overall Active Clustering Model -- 4.4 Analysis of the Acyclic Graph Restriction -- 5 Related Work -- 6 Conclusion -- References -- ConDist: A Context-Driven Categorical Distance Measure -- 1 Introduction -- 2 Related Work -- 3 The Distance Measure ConDist -- 3.1 Definition of ConDist -- 3.2 Attribute Distance dX -- 3.3 Attribute Weighting Function wX -- 3.4 Correlation, Context and Impact -- 3.5 Heterogeneous Data Sets -- 4 Experiments -- 4.1 Evaluation Methodology -- 4.2 Experiment 1 -- Context Attribute Selection -- 4.3 Experiment 2 -- Comparison in the Context of Classification -- 4.4 Experiment 3 -- Comparison in the Context of Clustering -- 5 Discussion -- 5.1 Experiment 1 -- Context Attribute Selection -- 5.2 Experiment 2 -- Comparison in the Context of Classification -- 5.3 Experiment 3 -- Comparison in the Context of Clustering -- 6 Summary -- References -- Discovering Opinion Spammer Groups by Network Footprints -- 1 Introduction -- 2 Measuring Network Footprints -- 2.1 Neighbor Diversity of Nodes -- 2.2 Self-Similarity in Real-World Graphs -- 2.3 NFS Measure -- 3 Detecting Spammer Groups -- 4 Evaluation -- 4.1 Performance of NFS on Synthetic Data -- 4.2 Performance of GroupStrainer on Synthetic Data -- 4.3 Results on Real-World Data -- 5 Related Work -- 6 Conclusion -- References -- Gamma Process Poisson Factorization for Joint Modeling of Network and Documents.
1 Introduction.
Record Nr. UNISA-996200359403316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine Learning and Knowledge Discovery in Databases : European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I / / edited by Annalisa Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, Carlos Soares, João Gama, Alípio Jorge
Machine Learning and Knowledge Discovery in Databases : European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I / / edited by Annalisa Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, Carlos Soares, João Gama, Alípio Jorge
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (LVIII, 709 p. 160 illus.)
Disciplina 006.31
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Data mining
Artificial intelligence
Pattern recognition
Information storage and retrieval
Database management
Application software
Data Mining and Knowledge Discovery
Artificial Intelligence
Pattern Recognition
Information Storage and Retrieval
Database Management
Information Systems Applications (incl. Internet)
ISBN 3-319-23528-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Abstracts of Invited Talks -- Towards Declarative, Domain-OrientedData Analysis -- Sum-Product Networks: Deep Modelswith Tractable Inference -- Mining Online Networks and Communities -- Learning to Acquire Knowledge in a SmartGrid Environment -- Untangling the Web's Invisible Net -- Towards a Digital Time Machine Fueled by BigData and Social Mining -- Abstracts of Journal Track Articles -- Contents - Part I -- Contents - Part II -- Contents - Part III -- Research Track Classification, Regression and Supervised Learning -- Data Split Strategiesfor Evolving Predictive Models -- 1 Introduction -- 2 Data Splits for Model Fitting, Selection,and Assessment -- 3 Issues with Evolving Models -- 4 Data Splits for Evolving Models -- 4.1 Parallel Dump Workflow -- 4.2 Serial Waterfall Workflow -- 4.3 Hybrid Workflow -- 5 Bias Due to Test Set Reuse -- 6 Illustration on Synthetic Data -- 7 Case Study: Paraphrase Detection -- 8 Related Work -- 9 Conclusions -- A Appendix: Bias Due to Test Set Reuse -- References -- Discriminative Interpolation for Classification of Functional Data -- 1 Introduction -- 2 Function Representations and Wavelets -- 3 Related Work -- 4 Classification by Discriminative Interpolation -- 4.1 Training Formulation -- 4.2 Testing Formulation -- 5 Experiments -- 6 Conclusion -- References -- Fast Label Embeddings via Randomized Linear Algebra -- 1 Introduction -- 1.1 Contributions -- 2 Algorithm Derivation -- 2.1 Notation -- 2.2 Background -- 2.3 Rank-Constrained Estimation and Embedding -- 2.4 Rembrandt -- 3 Related Work -- 4 Experiments -- 4.1 ALOI -- 4.2 ODP -- 4.3 LSHTC -- 5 Discussion -- References -- Maximum Entropy Linear Manifold for Learning Discriminative Low-Dimensional Representation -- 1 Introduction -- 2 General Idea -- 3 Theory -- 4 Closed form Solution for Objective and its Gradient.
5 Experiments -- 6 Conclusions -- References -- Novel Decompositions of Proper Scoring Rules for Classification: Score Adjustment as Precursor to Calibration -- 1 Introduction -- 2 Proper Scoring Rules -- 2.1 Scoring Rules -- 2.2 Divergence, Entropy and Properness -- 2.3 Expected Loss and Empirical Loss -- 3 Decompositions with Ideal Scores and Calibrated Scores -- 3.1 Ideal Scores Q and the Decomposition L=EL+IL -- 3.2 Calibrated Scores C and the Decomposition L=CL+RL -- 4 Adjusted Scores A and the Decomposition L=AL+PL -- 4.1 Adjustment -- 4.2 The Right Adjustment Procedure Guarantees Decreased Loss -- 5 Decomposition Theorems and Terminology -- 5.1 Decompositions with S,C,Q,Y -- 5.2 Decompositions with S,A,C,Q,Y and Terminology -- 6 Algorithms and Experiments -- 7 Related Work -- 8 Conclusions -- References -- Parameter Learning of Bayesian Network Classifiers Under Computational Constraints -- 1 Introduction -- 2 Related Work -- 3 Background and Notation -- 4 Algorithms for Online Learning of Reduced-Precision Parameters -- 4.1 Learning Maximum Likelihood Parameters -- 4.2 Learning Maximum Margin Parameters -- 5 Experiments -- 5.1 Datasets -- 5.2 Results -- 6 Discussions -- References -- Predicting Unseen Labels Using Label Hierarchies in Large-Scale Multi-label Learning -- 1 Introduction -- 2 Multi-label Classification -- 3 Model Description -- 3.1 Joint Space Embeddings -- 3.2 Learning with Hierarchical Structures Over Labels -- 3.3 Efficient Gradients Computation -- 3.4 Label Ranking to Binary Predictions -- 4 Experimental Setup -- 5 Experimental Results -- 5.1 Learning All Labels Together -- 5.2 Learning to Predict Unseen Labels -- 6 Pretrained Label Embeddings as Good Initial Guess -- 6.1 Understanding Label Embeddings -- 6.2 Results -- 7 Conclusions -- Regression with Linear Factored Functions -- 1 Introduction -- 1.1 Kernel Regression.
1.2 Factored Basis Functions -- 2 Regression -- 3 Linear Factored Functions -- 3.1 Function Class -- 3.2 Constraints -- 3.3 Regularization -- 3.4 Optimization -- 4 Empirical Evaluation -- 4.1 Demonstration -- 4.2 Evaluation -- 5 Discussion -- Appendix A LFF Definition and Properties -- Appendix B Inner Loop Derivation -- Appendix C Proofs of the Propositions -- References -- Ridge Regression, Hubness, and Zero-Shot Learning -- 1 Introduction -- 1.1 Background -- 1.2 Research Objective and Contributions -- 2 Zero-Shot Learning as a Regression Problem -- 3 Hubness Phenomenon and the Variance of Data -- 4 Hubness in Regression-Based Zero-Shot Learning -- 4.1 Shrinkage of Projected Objects -- 4.2 Influence of Shrinkage on Nearest Neighbor Search -- 4.3 Additional Argument for Placing Target Objects Closer to the Origin -- 4.4 Summary of the Proposed Approach -- 5 Related Work -- 6 Experiments -- 6.1 Experimental Setups -- 6.2 Task Descriptions and Datasets -- 6.3 Experimental Results -- 7 Conclusion -- References -- Solving Prediction Games with Parallel Batch Gradient Descent -- 1 Introduction -- 2 Problem Setting and Data Transformation Model -- 3 Analysis of Equilibrium Points -- 3.1 Existence of Equilibrium Points -- 3.2 Uniqueness of Equilibrium Points -- 4 Finding the Unique Equilibrium Point Efficiently -- 4.1 Inexact Line Search -- 4.2 Arrow-Hurwicz-Uzawa Method -- 4.3 Parallelized Methods -- 5 Experimental Results -- 5.1 Reference Methods -- 5.2 Performance of the Parameterized Transformation Model -- 5.3 Optimization Algorithms -- 5.4 Parallelized Models -- 6 Conclusion -- References -- Structured Regularizer for Neural Higher-Order Sequence Models -- 1 Introduction -- 2 Related Work -- 3 Higher-Order Conditional Random Fields -- 3.1 Parameter Learning -- 3.2 Forward Algorithm for 2nd-Order CRFs -- 4 Structured Regularizer -- 5 Experiments.
5.1 TIMIT Data Set -- 5.2 Experimental Setup -- 5.3 Labeling Results Using Only MLP Networks -- 5.4 Labeling Results Using LC-CRFs with Linear or Neural Higher-Order Factors -- 6 Conclusion -- References -- Versatile Decision Trees for Learning Over Multiple Contexts -- 1 Introduction -- 2 Dataset Shift -- 3 Versatile Decision Trees -- 3.1 Constructing Splits Using Percentiles -- 3.2 Adapting for Output Shifts -- 3.3 Versatile Model for Decision Trees -- 4 Experimental Results -- 4.1 Generating Synthetic Shifts -- 4.2 Results of the Synthetic Shifts -- 4.3 Results on Non-synthetic Shifts -- 5 Conclusion -- References -- When is Undersampling Effective in Unbalanced Classification Tasks? -- 1 Introduction -- 2 The Warping Effect of Undersampling on the Posterior Probability -- 3 The Interaction Between Warping and Variance of the Estimator -- 4 Experimental Validation -- 4.1 Synthetic Datasets -- 4.2 Real Datasets -- 5 Conclusion -- References -- Clustering and Unsupervised Learning -- A Kernel-Learning Approach to Semi-supervised Clustering with Relative Distance Comparisons -- 1 Introduction -- 2 Related Work -- 3 Kernel Learning with Relative Distances -- 3.1 Basic Definitions -- 3.2 Relative Distance Constraints -- 3.3 Extension to a Kernel Space -- 3.4 Log Determinant Divergence for Kernel Learning -- 3.5 Problem Definition -- 4 Semi-supervised Kernel Learning -- 4.1 Bregman Projections for Constrained Optimization -- 4.2 Semi-supervised Kernel Learning with Relative Comparisons -- Selecting the Bandwidth Parameter. -- Semi-Supervised Kernel Learning with Relative Comparisons. -- Clustering Method. -- 5 Experimental Results -- 5.1 Datasets -- 5.2 Relative Constraints vs. Pairwise Constraints -- 5.3 Multi-resolution Analysis -- 5.4 Generalization Performance -- 5.5 Effect of Equality Constraints -- 6 Conclusion -- References.
Bayesian Active Clustering with Pairwise Constraints -- 1 Introduction -- 2 Problem Statement -- 3 Bayesian Active Clustering -- 3.1 The Bayesian Clustering Model -- Marginalization of Cluster Labels. -- 3.2 Active Query Selection -- Selection Criteria. -- Computing the Selection Objectives. -- 3.3 The Sequential MCMC Sampling of W -- 3.4 Find the MAP Solution -- 4 Experiments -- 4.1 Dataset and Setup -- 4.2 Effectiveness of the Proposed Clustering Model -- 4.3 Effectiveness of the Overall Active Clustering Model -- 4.4 Analysis of the Acyclic Graph Restriction -- 5 Related Work -- 6 Conclusion -- References -- ConDist: A Context-Driven Categorical Distance Measure -- 1 Introduction -- 2 Related Work -- 3 The Distance Measure ConDist -- 3.1 Definition of ConDist -- 3.2 Attribute Distance dX -- 3.3 Attribute Weighting Function wX -- 3.4 Correlation, Context and Impact -- 3.5 Heterogeneous Data Sets -- 4 Experiments -- 4.1 Evaluation Methodology -- 4.2 Experiment 1 -- Context Attribute Selection -- 4.3 Experiment 2 -- Comparison in the Context of Classification -- 4.4 Experiment 3 -- Comparison in the Context of Clustering -- 5 Discussion -- 5.1 Experiment 1 -- Context Attribute Selection -- 5.2 Experiment 2 -- Comparison in the Context of Classification -- 5.3 Experiment 3 -- Comparison in the Context of Clustering -- 6 Summary -- References -- Discovering Opinion Spammer Groups by Network Footprints -- 1 Introduction -- 2 Measuring Network Footprints -- 2.1 Neighbor Diversity of Nodes -- 2.2 Self-Similarity in Real-World Graphs -- 2.3 NFS Measure -- 3 Detecting Spammer Groups -- 4 Evaluation -- 4.1 Performance of NFS on Synthetic Data -- 4.2 Performance of GroupStrainer on Synthetic Data -- 4.3 Results on Real-World Data -- 5 Related Work -- 6 Conclusion -- References -- Gamma Process Poisson Factorization for Joint Modeling of Network and Documents.
1 Introduction.
Record Nr. UNINA-9910484000803321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui