Differential Geometry and Lie Groups [[electronic resource] ] : A Computational Perspective / / by Jean Gallier, Jocelyn Quaintance
| Differential Geometry and Lie Groups [[electronic resource] ] : A Computational Perspective / / by Jean Gallier, Jocelyn Quaintance |
| Autore | Gallier Jean |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (XV, 777 p. 33 illus., 32 illus. in color.) |
| Disciplina | 516.36 |
| Collana | Geometry and Computing |
| Soggetto topico |
Differential geometry
Topological groups Lie groups Computer mathematics Differential Geometry Topological Groups, Lie Groups Computational Mathematics and Numerical Analysis |
| ISBN | 3-030-46040-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. The Matrix Exponential; Some Matrix Lie Groups -- 2. Adjoint Representations and the Derivative of exp -- 3. Introduction to Manifolds and Lie Groups -- 4. Groups and Group Actions -- 5. The Lorentz Groups ⊛ -- 6. The Structure of O(p,q) and SO(p, q) -- 7. Manifolds, Tangent Spaces, Cotangent Spaces -- 8. Construction of Manifolds From Gluing Data ⊛ -- 9. Vector Fields, Integral Curves, Flows -- 10. Partitions of Unity, Covering Maps ⊛ -- 11. Basic Analysis: Review of Series and Derivatives -- 12. A Review of Point Set Topology.-13. Riemannian Metrics, Riemannian Manifolds -- 14. Connections on Manifolds -- 15. Geodesics on Riemannian Manifolds -- 16. Curvature in Riemannian Manifolds -- 17. Isometries, Submersions, Killing Vector Fields -- 18. Lie Groups, Lie Algebra, Exponential Map -- 19. The Derivative of exp and Dynkin's Formula ⊛ -- 20. Metrics, Connections, and Curvature of Lie Groups -- 21. The Log-Euclidean Framework -- 22. Manifolds Arising from Group Actions. |
| Record Nr. | UNISA-996418267903316 |
Gallier Jean
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Differential Geometry and Lie Groups : A Computational Perspective / / by Jean Gallier, Jocelyn Quaintance
| Differential Geometry and Lie Groups : A Computational Perspective / / by Jean Gallier, Jocelyn Quaintance |
| Autore | Gallier Jean |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (XV, 777 p. 33 illus., 32 illus. in color.) |
| Disciplina | 516.36 |
| Collana | Geometry and Computing |
| Soggetto topico |
Differential geometry
Topological groups Lie groups Computer mathematics Differential Geometry Topological Groups, Lie Groups Computational Mathematics and Numerical Analysis |
| ISBN | 3-030-46040-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. The Matrix Exponential; Some Matrix Lie Groups -- 2. Adjoint Representations and the Derivative of exp -- 3. Introduction to Manifolds and Lie Groups -- 4. Groups and Group Actions -- 5. The Lorentz Groups ⊛ -- 6. The Structure of O(p,q) and SO(p, q) -- 7. Manifolds, Tangent Spaces, Cotangent Spaces -- 8. Construction of Manifolds From Gluing Data ⊛ -- 9. Vector Fields, Integral Curves, Flows -- 10. Partitions of Unity, Covering Maps ⊛ -- 11. Basic Analysis: Review of Series and Derivatives -- 12. A Review of Point Set Topology.-13. Riemannian Metrics, Riemannian Manifolds -- 14. Connections on Manifolds -- 15. Geodesics on Riemannian Manifolds -- 16. Curvature in Riemannian Manifolds -- 17. Isometries, Submersions, Killing Vector Fields -- 18. Lie Groups, Lie Algebra, Exponential Map -- 19. The Derivative of exp and Dynkin's Formula ⊛ -- 20. Metrics, Connections, and Curvature of Lie Groups -- 21. The Log-Euclidean Framework -- 22. Manifolds Arising from Group Actions. |
| Record Nr. | UNINA-9910483831003321 |
Gallier Jean
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
A Guide to the Classification Theorem for Compact Surfaces / / by Jean Gallier, Dianna Xu
| A Guide to the Classification Theorem for Compact Surfaces / / by Jean Gallier, Dianna Xu |
| Autore | Gallier Jean |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 |
| Descrizione fisica | 1 online resource (182 p.) |
| Disciplina | 512.55 |
| Collana | Geometry and Computing |
| Soggetto topico |
Topology
Manifolds (Mathematics) Complex manifolds Algebraic topology Manifolds and Cell Complexes (incl. Diff.Topology) Algebraic Topology |
| ISBN | 3-642-34364-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | The Classification Theorem: Informal Presentation -- Surfaces -- Simplices, Complexes, and Triangulations -- The Fundamental Group, Orientability -- Homology Groups -- The Classification Theorem for Compact Surfaces -- Viewing the Real Projective Plane in R3 -- Proof of Proposition 5.1 -- Topological Preliminaries -- History of the Classification Theorem -- Every Surface Can be Triangulated -- Notes . |
| Record Nr. | UNINA-9910438139303321 |
Gallier Jean
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||