Approximation by complex Bernstein and convolution type operators [[electronic resource] /] / Sorin G. Gal |
Autore | Gal Sorin G. <1953-> |
Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, c2009 |
Descrizione fisica | 1 online resource (350 p.) |
Disciplina | 511/.4 |
Collana | Series on concrete and applicable mathematics |
Soggetto topico |
Approximation theory
Operator theory Bernstein polynomials Convolutions (Mathematics) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-76138-2
9786612761386 981-4282-43-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Bernstein-Type Operators of One Complex Variable; 1.0 Auxiliary Results in Complex Analysis; 1.1 Bernstein Polynomials; 1.1.1 Bernstein Polynomials on Compact Disks; 1.1.2 Bernstein-Faber Polynomials on Compact Sets; 1.2 Iterates of Bernstein Polynomials; 1.3 Generalized Voronovskaja Theorems for Bernstein Polynomials; 1.4 Butzer's Linear Combination of Bernstein Polynomials; 1.5 q-Bernstein Polynomials; 1.6 Bernstein-Stancu Polynomials; 1.7 Bernstein-Kantorovich Type Polynomials; 1.8 Favard-Sz asz-Mirakjan Operators; 1.9 Baskakov Operators
1.10 Bal azs-Szabados Operators1.11 Bibliographical Notes and Open Problems; 2. Bernstein-Type Operators of Several Complex Variables; 2.1 Introduction; 2.2 Bernstein Polynomials; 2.3 Favard-Sz asz-Mirakjan Operators; 2.4 Baskakov Operators; 2.5 Bibliographical Notes and Open Problems; 3. Complex Convolutions; 3.1 Linear Polynomial Convolutions; 3.2 Linear Non-Polynomial Convolutions; 3.2.1 Picard, Poisson-Cauchy and Gauss-Weierstrass Complex Convolutions; 3.2.2 Complex q-Picard and q-Gauss-Weierstrass Singular Integrals; 3.2.3 Post-Widder Complex Convolution 3.2.4 Rotation-Invariant Complex Convolutions3.2.5 Sikkema Complex Convolutions; 3.3 Nonlinear Complex Convolutions; 3.4 Bibliographical Notes and Open Problems; 4. Appendix : Related Topics; 4.1 Bernstein Polynomials of Quaternion Variable; 4.2 Approximation of Vector-Valued Functions; 4.2.1 Real Variable Case; 4.2.2 Complex Variable Case; 4.3 Strong Approximation by Complex Taylor Series; 4.4 Bibliographical Notes and Open Problems; Bibliography; Index |
Record Nr. | UNINA-9910456141303321 |
Gal Sorin G. <1953-> | ||
Singapore ; ; Hackensack, N.J., : World Scientific, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Approximation by complex Bernstein and convolution type operators [[electronic resource] /] / Sorin G. Gal |
Autore | Gal Sorin G. <1953-> |
Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, c2009 |
Descrizione fisica | 1 online resource (350 p.) |
Disciplina | 511/.4 |
Collana | Series on concrete and applicable mathematics |
Soggetto topico |
Approximation theory
Operator theory Bernstein polynomials Convolutions (Mathematics) |
ISBN |
1-282-76138-2
9786612761386 981-4282-43-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Bernstein-Type Operators of One Complex Variable; 1.0 Auxiliary Results in Complex Analysis; 1.1 Bernstein Polynomials; 1.1.1 Bernstein Polynomials on Compact Disks; 1.1.2 Bernstein-Faber Polynomials on Compact Sets; 1.2 Iterates of Bernstein Polynomials; 1.3 Generalized Voronovskaja Theorems for Bernstein Polynomials; 1.4 Butzer's Linear Combination of Bernstein Polynomials; 1.5 q-Bernstein Polynomials; 1.6 Bernstein-Stancu Polynomials; 1.7 Bernstein-Kantorovich Type Polynomials; 1.8 Favard-Sz asz-Mirakjan Operators; 1.9 Baskakov Operators
1.10 Bal azs-Szabados Operators1.11 Bibliographical Notes and Open Problems; 2. Bernstein-Type Operators of Several Complex Variables; 2.1 Introduction; 2.2 Bernstein Polynomials; 2.3 Favard-Sz asz-Mirakjan Operators; 2.4 Baskakov Operators; 2.5 Bibliographical Notes and Open Problems; 3. Complex Convolutions; 3.1 Linear Polynomial Convolutions; 3.2 Linear Non-Polynomial Convolutions; 3.2.1 Picard, Poisson-Cauchy and Gauss-Weierstrass Complex Convolutions; 3.2.2 Complex q-Picard and q-Gauss-Weierstrass Singular Integrals; 3.2.3 Post-Widder Complex Convolution 3.2.4 Rotation-Invariant Complex Convolutions3.2.5 Sikkema Complex Convolutions; 3.3 Nonlinear Complex Convolutions; 3.4 Bibliographical Notes and Open Problems; 4. Appendix : Related Topics; 4.1 Bernstein Polynomials of Quaternion Variable; 4.2 Approximation of Vector-Valued Functions; 4.2.1 Real Variable Case; 4.2.2 Complex Variable Case; 4.3 Strong Approximation by Complex Taylor Series; 4.4 Bibliographical Notes and Open Problems; Bibliography; Index |
Record Nr. | UNINA-9910780725903321 |
Gal Sorin G. <1953-> | ||
Singapore ; ; Hackensack, N.J., : World Scientific, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Approximation by complex Bernstein and convolution type operators / / Sorin G. Gal |
Autore | Gal Sorin G. <1953-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, c2009 |
Descrizione fisica | 1 online resource (350 p.) |
Disciplina | 511/.4 |
Collana | Series on concrete and applicable mathematics |
Soggetto topico |
Approximation theory
Operator theory Bernstein polynomials Convolutions (Mathematics) |
ISBN |
1-282-76138-2
9786612761386 981-4282-43-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Bernstein-Type Operators of One Complex Variable; 1.0 Auxiliary Results in Complex Analysis; 1.1 Bernstein Polynomials; 1.1.1 Bernstein Polynomials on Compact Disks; 1.1.2 Bernstein-Faber Polynomials on Compact Sets; 1.2 Iterates of Bernstein Polynomials; 1.3 Generalized Voronovskaja Theorems for Bernstein Polynomials; 1.4 Butzer's Linear Combination of Bernstein Polynomials; 1.5 q-Bernstein Polynomials; 1.6 Bernstein-Stancu Polynomials; 1.7 Bernstein-Kantorovich Type Polynomials; 1.8 Favard-Sz asz-Mirakjan Operators; 1.9 Baskakov Operators
1.10 Bal azs-Szabados Operators1.11 Bibliographical Notes and Open Problems; 2. Bernstein-Type Operators of Several Complex Variables; 2.1 Introduction; 2.2 Bernstein Polynomials; 2.3 Favard-Sz asz-Mirakjan Operators; 2.4 Baskakov Operators; 2.5 Bibliographical Notes and Open Problems; 3. Complex Convolutions; 3.1 Linear Polynomial Convolutions; 3.2 Linear Non-Polynomial Convolutions; 3.2.1 Picard, Poisson-Cauchy and Gauss-Weierstrass Complex Convolutions; 3.2.2 Complex q-Picard and q-Gauss-Weierstrass Singular Integrals; 3.2.3 Post-Widder Complex Convolution 3.2.4 Rotation-Invariant Complex Convolutions3.2.5 Sikkema Complex Convolutions; 3.3 Nonlinear Complex Convolutions; 3.4 Bibliographical Notes and Open Problems; 4. Appendix : Related Topics; 4.1 Bernstein Polynomials of Quaternion Variable; 4.2 Approximation of Vector-Valued Functions; 4.2.1 Real Variable Case; 4.2.2 Complex Variable Case; 4.3 Strong Approximation by Complex Taylor Series; 4.4 Bibliographical Notes and Open Problems; Bibliography; Index |
Record Nr. | UNINA-9910824069103321 |
Gal Sorin G. <1953-> | ||
Singapore ; ; Hackensack, N.J., : World Scientific, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Shape-preserving approximation by real and complex polynomials [[electronic resource] /] / Sorin G. Gal |
Autore | Gal Sorin G. <1953-> |
Edizione | [1st ed. 2008.] |
Pubbl/distr/stampa | Boston, : Birkhäuser, 2008 |
Descrizione fisica | 1 online resource (364 pages) |
Disciplina | 511.4 |
Soggetto topico |
Approximation theory
Bernstein polynomials Multivariate analysis |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-25095-0
9786613250957 0-8176-4703-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Shape-Preserving Approximation By Real Univariate Polynomials -- Shape-Preserving Approximation by Real Multivariate Polynomials -- Shape-Preserving Approximation by Complex Univariate Polynomials -- Shape-Preserving Approximation by Complex Multivariate Polynomials -- Appendix : Some Related Topics. |
Record Nr. | UNINA-9910459639103321 |
Gal Sorin G. <1953-> | ||
Boston, : Birkhäuser, 2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Shape-preserving approximation by real and complex polynomials [[electronic resource] /] / Sorin G. Gal |
Autore | Gal Sorin G. <1953-> |
Edizione | [1st ed. 2008.] |
Pubbl/distr/stampa | Boston, : Birkhäuser, 2008 |
Descrizione fisica | 1 online resource (364 pages) |
Disciplina | 511.4 |
Soggetto topico |
Approximation theory
Bernstein polynomials Multivariate analysis |
ISBN |
1-283-25095-0
9786613250957 0-8176-4703-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Shape-Preserving Approximation By Real Univariate Polynomials -- Shape-Preserving Approximation by Real Multivariate Polynomials -- Shape-Preserving Approximation by Complex Univariate Polynomials -- Shape-Preserving Approximation by Complex Multivariate Polynomials -- Appendix : Some Related Topics. |
Record Nr. | UNINA-9910785037903321 |
Gal Sorin G. <1953-> | ||
Boston, : Birkhäuser, 2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Shape-preserving approximation by real and complex polynomials / / Sorin G. Gal |
Autore | Gal Sorin G. <1953-> |
Edizione | [1st ed. 2008.] |
Pubbl/distr/stampa | Boston, : Birkhäuser, 2008 |
Descrizione fisica | 1 online resource (364 pages) |
Disciplina | 511.4 |
Soggetto topico |
Approximation theory
Bernstein polynomials Multivariate analysis |
ISBN |
1-283-25095-0
9786613250957 0-8176-4703-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Shape-Preserving Approximation By Real Univariate Polynomials -- Shape-Preserving Approximation by Real Multivariate Polynomials -- Shape-Preserving Approximation by Complex Univariate Polynomials -- Shape-Preserving Approximation by Complex Multivariate Polynomials -- Appendix : Some Related Topics. |
Record Nr. | UNINA-9910815788303321 |
Gal Sorin G. <1953-> | ||
Boston, : Birkhäuser, 2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|