top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Drinking water treatment . Volume 2. : chemical and physical elimination of organic substances and particles / / Kader Gaid
Drinking water treatment . Volume 2. : chemical and physical elimination of organic substances and particles / / Kader Gaid
Autore Gaid Kader
Pubbl/distr/stampa London, England : , : ISTE Ltd and John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (404 pages)
Disciplina 628.162
Soggetto topico Drinking water - Purification
Water - Purification
Biotechnology
ISBN 1-394-22603-9
1-394-22601-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Chapter 7. Removal of Natural Organic Matter -- 7.1. Natural organic matter: humic substances -- 7.2. Methods of quantification and assessment of organic substances in water -- 7.2.1. Total organic carbon -- 7.2.2. Absorbance of ultraviolet light at 254 nm (UV 254) -- 7.2.3. Specific UV absorbance -- 7.2.4. Liquid chromatography -- 7.2.5. Hydrophobic organic carbon -- 7.2.6. Fluorescence -- 7.3. Conditions for the removal of NOM -- 7.4. NOM removal techniques -- 7.4.1. Coagulation-flocculation -- 7.5. Adsorption on activated carbon -- 7.5.1. Mechanism of NOM removal by activated carbon -- 7.5.2. Implementation of activated carbon adsorption for NOM removal -- 7.6. Ozonation -- 7.6.1. Preozonation -- 7.6.2. Interozonation -- 7.7. Biological treatment -- 7.7.1. Biological treatment with PAC: operating principle of the Opaline® B process (Veolia) -- 7.7.2. Biological treatment combining ozone and GAC -- 7.8. Treatment of ion exchange resins -- 7.8.1. Use of resins for NOM removal: mechanism of NOM removal -- 7.8.2. Parameters affecting the performance of resins for the removal of NOM -- 7.8.3. Resin regeneration -- 7.8.4. The Opalix® process -- 7.9. NOM removal by high-pressure membranes -- 7.10. References -- Chapter 8. Filtration -- 8.1. Rapid filters and very high-rate filters (TGV) -- 8.2. Multimedia filters -- 8.3. Direct filtration -- 8.4. Pressurized filters -- 8.5. Filtration mechanisms -- 8.5.1. General principle -- 8.5.2. Mechanisms involved in filtration -- 8.6. Implementation parameters -- 8.6.1. Materials -- 8.6.2. Material height/d10 ratio -- 8.6.3. ES ratio -- 8.7. Sizing parameters: filtration rate and material height -- 8.8. Operating parameters -- 8.8.1. Pressure loss in a clean filter -- 8.8.2. Pressure loss during clogging.
8.8.3. Estimation of the turbidity of filtered water in single-layer filters -- 8.8.4. Retention capacity -- 8.8.5. Filter washing conditions: theory and calculations -- 8.8.6. Cycle time -- 8.8.7. Main parameters involved in filter sizing -- 8.9. Veolia filtration technologies: general information -- 8.9.1. Characteristics of open gravity filters -- 8.10. Regulation systems -- 8.10.1. Hydraulic regulators -- 8.10.2. Control valves -- 8.11. Recycling and microbiological risks -- 8.12. Monitoring the operation and performance of filters -- 8.12.1. Turbidity -- 8.12.2. Particle count -- 8.12.3. Problems with the operation of filters -- 8.13. References -- Chapter 9. Adsorption on Activated Carbon -- 9.1. Activation processes of activated carbon -- 9.1.1. Chemical activation -- 9.1.2. Physical activation -- 9.2. Physicochemical properties of activated carbon -- 9.2.1. Parameters influencing adsorption -- 9.3. Transport process in activated carbon: mass transfer -- 9.3.1. Adsorption mechanisms and isotherms -- 9.4. The different forms of conditioning of activated carbons -- 9.4.1. Powdered activated carbon -- 9.4.2. Micrograin activated carbon (ìgrain) -- 9.4.3. Granular activated carbon -- 9.5. Adsorption reactors on activated carbon: removal process -- 9.6. PAC reactors: description of PAC reactors -- 9.6.1. Mass balance -- 9.6.2. GAC reactors in adsorption mode: GAC filters -- 9.6.3. Fluidized bed activated carbon reactors -- 9.6.4. GAC-ìgrain-PAC comparison -- 9.6.5. Hybrid process with a PAC reactor associated with UF membranes -- 9.7. Veolia technologies: treatment process with PAC reactors -- 9.7.1. Implementation in a settler without PAC recirculation -- 9.7.2. Implementation with PAC recirculation -- 9.7.3. Opaline® C process: PAC-membrane hybrid -- 9.8. Micrograin activated carbon reactors.
9.8.1. Integration of ìgrain activated carbon in the treatment process -- 9.8.2. The Filtraflo® Carb -- 9.8.3. Opacarb®FL -- 9.8.4. Opacarb®MG -- 9.9. Fixed bed reactors - GAC filters -- 9.9.1. The GAC filter (Veolia) -- 9.9.2. GAC filters in series -- 9.9.3. Implementation modes for GAC filters -- 9.10. Pressurized GAC filters (Opacarb™ filters) -- 9.11. References -- Index -- Summaries of other volumes -- EULA.
Record Nr. UNINA-9910830067703321
Gaid Kader  
London, England : , : ISTE Ltd and John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Drinking water treatment . Volume 3. : organic and mineral micropollutants / / Kader Gaid
Drinking water treatment . Volume 3. : organic and mineral micropollutants / / Kader Gaid
Autore Gaid Kader
Pubbl/distr/stampa Hoboken, NJ : , : ISTE Ltd and John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (454 pages)
Disciplina 628.162
Soggetto topico Drinking water - Purification
Water - Purification
Biotechnology
ISBN 1-394-22606-3
1-394-22604-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Chapter 10. Removal of Micropollutants -- 10.1. Introduction -- 10.2. Pesticides -- 10.3. Pharmaceuticals and industrial waste -- 10.4. Pesticide removal technologies and emerging MPs -- 10.4.1. Adsorption onto activated carbon (AC) -- 10.4.2. Ozonation -- 10.4.3. Ozone-activated carbon combination -- 10.4.4. Advanced chemical oxidation -- 10.4.5. Nanofiltration and reverse osmosis membranes -- 10.5. Frogbox®: an effective monitoring and control tool -- 10.6. The evolution of micropollutants in drinking water plants -- 10.7. References -- Chapter 11. Removal of Perfluorinated Compounds -- 11.1. Physicochemical properties -- 11.2. Presence in the water -- 11.3. Drinking water regulations -- 11.4. Treatments -- 11.4.1. Coagulation-flocculation-settling (or flotation) -- 11.4.2. Chemical oxidation -- 11.4.3. UV oxidation -- 11.4.4. Activated carbon -- 11.4.5. High-pressure membranes: nanofiltration and reverse osmosis -- 11.5. Conclusion -- 11.6. References -- Chapter 12. Biological Removal of Ammonia -- 12.1. The principle of biological nitrification -- 12.2. Design parameters -- 12.2.1. Dissolved oxygen -- 12.2.2. Filtration rate -- 12.2.3. NH4+ concentration removed as a function of temperature (°C) -- 12.2.4. Applicable volume load -- 12.2.5. Contact time -- 12.2.6. Material height -- 12.3. Factors limiting oxygen -- 12.3.1. Mineral carbon -- 12.3.2. pH -- 12.3.3. Temperature -- 12.3.4. Other elements -- 12.3.5. Biological filter washing -- 12.4. Implementation -- 12.4.1. Sand filtration -- 12.5. Biofilters (Biocarbon® process) -- 12.6. Water treatment stations -- 12.6.1. Treatment stations with conventional sand, dual media or GAC filtration -- 12.6.2. Treatment stations with Biocarbon® filters -- 12.7. References -- Chapter 13. Nitrate Removal -- 13.1. Biological treatment.
13.1.1. Biochemical reactions -- 13.1.2. Nitrite formation -- 13.1.3. The bacteriological aspect -- 13.1.4. Biofilter description (Biodenit® process) -- 13.1.5. Water treatment stations including biological denitrification -- 13.1.6. Factors affecting biological denitrification -- 13.1.7. Design parameters: applied volumic load -- 13.1.8. Design parameters: minimum contact time (tc min) -- 13.1.9. Design parameters: height of Biodagen® material (m) -- 13.1.10. Design parameters: material volume (m3) -- 13.1.11. Partial treatment -- 13.1.12. Sludge production -- 13.1.13. The reagents -- 13.1.14. Biological denitrification implementation and exploitation -- 13.2. Treatment with ion exchange resins -- 13.2.1. General exchange mechanism (Ecodenit® process) -- 13.2.2. Ecodenit® process technology -- 13.2.3. Integration into the water treatment station -- 13.2.4. Packaged solutions -- 13.3. Nitrate removal by high pressure membranes -- 13.4. References -- Chapter 14. Removal of Perchlorates -- 14.1. General aspects -- 14.2. Main processes for removing perchlorate ions -- 14.2.1. Ion exchange resins -- 14.2.2. Nanofiltration membranes -- 14.3. Conclusions regarding the removal of perchlorates -- 14.4. References -- Chapter 15. Water Softening -- 15.1. Water hardness -- 15.2. Alkalinity -- 15.3. Langelier index (LI or LSI) -- 15.4. Drinking water hardness goals -- 15.5. General principles of water softening -- 15.5.1. The main chemical reactions with lime and soda -- 15.6. Water softening chemical processes -- 15.6.1. Limitations of the process and empirical considerations -- 15.7. Veolia water softening technologies -- 15.7.1. Clariflocculator -- 15.7.2. Actiflo® softening -- 15.7.3. Multiflo® softening -- 15.7.4. Catalytic water softening -- 15.8. Saphira® process -- 15.9. Water softening using high-pressure membranes.
15.10. Water softening using ion exchange resins -- 15.10.1. Resin resistance: use precautions -- 15.10.2. Ca2+ and Mg2+ removal -- 15.10.3. Bicarbonate removal -- 15.10.4. Resin operating capacity -- 15.10.5. Operating parameters -- 15.11. Comparison between the four water softening solutions discussed -- 15.11.1. Advantages and limitations of the different solutions -- 15.12. References -- Chapter 16. Metal Removal -- 16.1. Iron and manganese removal: general aspects -- 16.1.1. Presence of iron and manganese at the resource level -- 16.1.2. Presence of iron and manganese at the production level -- 16.1.3. Regulatory aspects of iron and manganese -- 16.1.4. Iron and manganese treatments -- 16.2. Arsenic removal -- 16.2.1. Arsenic chemistry -- 16.2.2. Arsenic treatments -- 16.3. Removal of selenium (Se) -- 16.3.1. The chemistry of selenium -- 16.3.2. Selenium removal treatments -- 16.4. Nickel removal -- 16.4.1. The chemistry of nickel -- 16.4.2. Nickel removal treatment -- 16.5. References -- Index -- Summaries of other volumes -- EULA.
Record Nr. UNINA-9910830942203321
Gaid Kader  
Hoboken, NJ : , : ISTE Ltd and John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Drinking water treatment . Volume 1. : water quality and clarification / / Kader Gaid
Drinking water treatment . Volume 1. : water quality and clarification / / Kader Gaid
Autore Gaid Kader
Pubbl/distr/stampa London, England : , : ISTE Ltd and John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (324 pages)
Disciplina 628.162
Soggetto topico Drinking water - Purification
Water - Purification
Biotechnology
ISBN 1-394-22600-4
1-394-22598-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1. Introduction -- Chapter 2. Physicochemical and Microbiological Composition of Raw Water -- 2.1. Water resources -- 2.1.1. Physicochemical parameters -- 2.1.2. Algae (including cyanobacteria and cyanotoxins) -- 2.1.3. Tastes and odors -- 2.1.4. Micropollutants -- 2.2. Microbiology -- 2.2.1. Bacteria -- 2.2.2. Viruses -- 2.2.3. Parasites (Cryptosporidium and Giardia) -- 2.3. Quality of water intended for human consumption -- 2.3.1. Microbiological parameters -- 2.4. References -- Chapter 3. Aeration and Stripping -- 3.1. Cascade aeration -- 3.1.1. Characteristics -- 3.2. Operating principle of a cascade aerator system -- 3.2.1. Data -- 3.2.2. Goals -- 3.2.3. Results -- 3.3. Aeration by fine bubble diffusers -- 3.3.1. Air diffusers -- 3.3.2. Air insufflation by oxytube -- 3.4. Stripping -- 3.4.1. Stripping tower design -- 3.4.2. Description -- 3.4.3. CO2 removal -- 3.4.4. Tetrachlorethylene and trichlorethylene removal -- 3.5. Synthesis of aeration systems -- 3.6. References -- Chapter 4. Coagulation-flocculation -- 4.1. Colloidal matter -- 4.2. Coagulation -- 4.2.1. Double-layer compression -- 4.2.2. Adsorption and interparticle bridging (flocculation) -- 4.3. Flocculation -- 4.3.1. Perikinetic flocculation -- 4.3.2. Orthokinetic flocculation -- 4.3.3. The influence of agitation -- 4.3.4. G and t -- 4.4. Coagulants -- 4.4.1. Metallic coagulants -- 4.4.2. Synthetic organic coagulants -- 4.5. Flocculants -- 4.5.1. Natural organic and synthetic flocculants -- 4.5.2. Flocculation adjuvants -- 4.6. Factors affecting coagulation and flocculation -- 4.6.1. Influence of water temperature -- 4.6.2. Influence of pH -- 4.6.3. Coagulation and flocculation times -- 4.7. How to choose the best coagulant? -- 4.7.1. How to choose the optimal dose of coagulant? -- 4.8. Residual aluminum.
4.9. Alkalinity consumption -- 4.9.1. Aluminum and alkalinity -- 4.9.2. Iron and alkalinity -- 4.10. Reduction efficiency of some water constituents -- 4.10.1. Turbidity and SS -- 4.10.2. Microorganism removal -- 4.11. Jar tests -- 4.11.1. The specific case of jar test for Actiflo® -- 4.12. References -- Chapter 5. Settling -- 5.1. The principles of settling -- 5.2. Horizontal settlers -- 5.2.1. Principle -- 5.2.2. Design -- 5.2.3. Implementation -- 5.3. Lamella settlers -- 5.3.1. Theory and principle -- 5.3.2. Basic design for lamella settlers -- 5.3.3. Implementation -- 5.4. Veolia technologies -- 5.4.1. Lamella settlers: Multiflo® settler -- 5.4.2. Ballasted floc settlers -- 5.5. References -- Chapter 6. Flotation -- 6.1. The scope of DAF -- 6.2. The main stages of a flotation process -- 6.2.1. Coagulation -- 6.2.2. Flocculation -- 6.2.3. Flotation -- 6.3. The fundamental mechanisms of flotation -- 6.3.1. Coagulation -- 6.3.2. Flocculation -- 6.3.3. Contact zone -- 6.3.4. Separation zone -- 6.4. Design parameters -- 6.4.1. Coagulation -- 6.4.2. Flocculation -- 6.4.3. Flotation zone -- 6.4.4. Contact time -- 6.4.5. Temperature -- 6.4.6. Air saturation tank -- 6.4.7. Mass balance -- 6.4.8. Recirculation and injection nozzles -- 6.5. Operating parameters affecting flotation performance -- 6.5.1. Choice of coagulant -- 6.5.2. Rise velocity -- 6.5.3. Contact time -- 6.5.4. Bubble volume concentration -- 6.5.5. Gas solubility -- 6.5.6. Hydraulic efficiency -- 6.5.7. Air/water ratio -- 6.6. Performance and monitoring -- 6.6.1. Treatment monitoring -- 6.6.2. Performance of DAF systems in relation to algae removal -- 6.6.3. Performance against parasites -- 6.6.4. Performance with the addition of PAC -- 6.7. Veolia technologies using flotation -- 6.7.1. Spidflow®: principle -- 6.7.2. Advantages and limitations of DAF systems -- 6.7.3. Spidflow® filter.
6.7.4. Ozoflot® -- 6.7.5. Flottazone® -- 6.7.6. Packaged solutions: Spidflow® Pack -- 6.8. References -- Index -- Summaries of other volumes -- EULA.
Record Nr. UNINA-9910830946303321
Gaid Kader  
London, England : , : ISTE Ltd and John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Drinking water treatment 4 : membranes applied to drinking water and desalination / / Kader Gaid
Drinking water treatment 4 : membranes applied to drinking water and desalination / / Kader Gaid
Autore Gaid Kader
Pubbl/distr/stampa London, England ; Hoboken, NJ : , : ISTE Ltd : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (415 pages)
Disciplina 730
Soggetto topico Nature
ISBN 1-394-22613-6
1-394-22611-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Chapter 17. Microfiltration and Ultrafiltration -- 17.1. UF and MF: cut-off -- 17.2. UF and MF: materials -- 17.2.1. Cellulose acetate -- 17.2.2. Polypropylene -- 17.2.3. Polyacrylonitrile -- 17.2.4. Polyether sulfone/polysulfone -- 17.2.5. Polyvinylidene fluoride -- 17.3. UF and MF: membrane types -- 17.4. UF and MF: implementation of membranes under pressure -- 17.4.1. Horizontal-vertical configuration -- 17.4.2. Submerged membranes -- 17.5. Filtration modes: frontal or tangential -- 17.5.1. Batch operation: filtration-backwash -- 17.5.2. Filtration direction -- 17.6. Sizing parameters: membrane selection -- 17.7. Sizing parameters: horizontal or vertical configuration -- 17.8. Sizing parameters: flow -- 17.8.1. Instantaneous flow and net flow -- 17.8.2. Transmembrane pressure -- 17.8.3. Resistance -- 17.8.4. Permeability -- 17.8.5. Principle of the calculation of the membrane surface and water losses -- 17.8.6. Pre-filters -- 17.9. Operating parameters -- 17.9.1. Evolution of the permeability -- 17.9.2. Clogging -- 17.9.3. Frequency and conditions of hydraulic and chemical backwashing -- 17.9.4. Frequency and conditions of CIP -- 17.9.5. Membrane integrity -- 17.10. MF and UF's place in a treatment process -- 17.10.1. Turbidity and SS -- 17.10.2. TOC (and UV254) -- 17.10.3. Algae -- 17.10.4. Iron and manganese -- 17.11. Combination of coagulation and UF membranes -- 17.12. Combination of PAC and UF -- 17.13. Performance and guarantees -- 17.13.1. Turbidity -- 17.13.2. Supplier warranty on the life of the membranes -- 17.14. Advantages of MF and UF -- 17.15. Veolia's experience -- 17.16. Appendix: sheets -- 17.17. References -- Chapter 18. Nanofiltration and Reverse Osmosis -- 18.1. Membranes -- 18.1.1. Materials -- 18.1.2. Membrane element configurations.
18.2. Principles of operation and separation -- 18.2.1. Conceptual principle -- 18.2.2. Molecular weight cut-off -- 18.3. Treatment process including high-pressure membranes and parameters to be considered -- 18.3.1. Particulates and SS -- 18.3.2. Particle count -- 18.3.3. Conductivity -- 18.3.4. The SDI or MFI: clogging indices -- 18.3.5. The SDI -- 18.3.6. The MFI -- 18.3.7. Salts and metals -- 18.3.8. Biological clogging -- 18.3.9. Undesirable substances -- 18.3.10. Limit values of compounds at the inlet of high-pressure membranes -- 18.4. Sizing parameters -- 18.4.1. Temperature -- 18.4.2. Implementation configuration -- 18.4.3. Calculation of the osmotic pressure -- 18.4.4. Mass flow diagram -- 18.4.5. Salt passage -- 18.4.6. Concentration factor -- 18.4.7. Hydraulic pressure loss -- 18.4.8. Pressure tubes and number of modules per tube -- 18.5. Chemical conditioning of pre-treated water -- 18.5.1. Calculation of saturation indices and antiscalant dosage -- 18.5.2. Choice and implementation of the antiscalant -- 18.5.3. pH adjustment at the membrane inlet -- 18.5.4. Choice and application of the acid -- 18.5.5. Influence of sulfates -- 18.6. Design and implementation -- 18.6.1. Pre-treatment -- 18.6.2. Treatment processes -- 18.6.3. Membrane station -- 18.6.4. Post-treatment -- 18.6.5. Cleaning units in place -- 18.7. Functional and operating parameters -- 18.7.1. Basic principles -- 18.7.2. Permeability (Lp) -- 18.7.3. Longitudinal pressure drop (ΔPfc) -- 18.7.4. Hydraulic resistance -- 18.7.5. Energy -- 18.7.6. SDI -- 18.7.7. Chemical cleaning -- 18.7.8. The fate of concentrates and used washing solutions -- 18.7.9. Methods for assessing the impact of concentrate discharges in the natural environment -- 18.8. High-pressure membrane performance -- 18.8.1. Organic matter.
18.8.2. Pesticides, drug residues, endocrine disruptors and industrial residues -- 18.8.3. Various toxic and undesirable substances -- 18.8.4. Salts -- 18.8.5. Micro-organisms -- 18.8.6. Overall performance -- 18.9. Lifetime warranties -- 18.10. Parameters affecting the performance of NF membranes -- 18.10.1. Taking clogging into account -- 18.11. Monitoring and control parameters: standardization of raw data -- 18.12. Veolia's experience: examples of treatment processes -- 18.12.1. Surface water No. 1 -- 18.12.2. Surface water No. 2 -- 18.12.3. Groundwater No. 1 -- 18.12.4. Groundwater No. 2 -- 18.13. References -- Chapter 19. Desalination by Reverse Osmosis -- 19.1. Characterization of the water to be treated -- 19.1.1. Physical characteristics -- 19.1.2. Chemical composition: ionic content -- 19.1.3. Chemical composition: organic substances -- 19.2. Fields of application -- 19.3. Operating principle of RO -- 19.4. The membranes used in desalination -- 19.5. Sizing parameters -- 19.5.1. Flow -- 19.5.2. Concentration polarization -- 19.5.3. Conversion rate -- 19.5.4. Passage rate and rejection rate in salts -- 19.5.5. Influence of the temperature -- 19.5.6. Determining the number of modules and pressure tubes -- 19.6. Implementation -- 19.6.1. Membranes -- 19.6.2. Pressure tube -- 19.6.3. Pass -- 19.7. Pre-treatment -- 19.7.1. Pre-treatment selection -- 19.7.2. Pre-treatment systems -- 19.8. Pre-chlorination -- 19.8.1. Pre-chlorination and development of micro- and macro-organisms -- 19.8.2. Implementation of chlorination -- 19.8.3. pH adjustment -- 19.8.4. Direct filtration -- 19.8.5. Chemical conditions of implementation -- 19.8.6. Flotation -- 19.8.7. Settling -- 19.8.8. Membranes (UF and MF) -- 19.8.9. Conclusions on pre-treatment with UF membranes -- 19.9. Energy consumption -- 19.9.1. Energy consumption without recovery.
19.9.2. Energy consumption with recovery -- 19.9.3. Hydraulic exchanger systems -- 19.10. Operating parameters -- 19.10.1. Relationship between conductivity and salt concentration -- 19.10.2. Controlling RO membrane clogging -- 19.11. Performance of RO membranes used in desalination -- 19.11.1. Boron removal -- 19.12. Post-treatment -- 19.12.1. Indicators characterizing the aggressiveness or corrosiveness of the water -- 19.12.2. Application to desalinated water -- 19.12.3. Treatments -- 19.13. Monitoring and control parameters -- 19.13.1. Standardization of raw data -- 19.13.2. Bromates -- 19.14. Veolia's new processes applied to seawater desalination -- 19.14.1. Flotation with the Spidflow® process -- 19.14.2. Spidflow® filter process applied to seawater desalination -- 19.14.3. BiopROtector -- 19.14.4. Barrel (SIDEM Veolia) -- 19.14.5. Hiprode -- 19.15. Packaged solutions in desalination -- 19.16. Veolia's experience (HP membranes) -- 19.17. References -- Index -- Summaries of other volumes -- EULA.
Record Nr. UNINA-9910830061803321
Gaid Kader  
London, England ; Hoboken, NJ : , : ISTE Ltd : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Drinking water treatment 5 : calco-carbonic equilibrium and disinfection / / Kader Gaid
Drinking water treatment 5 : calco-carbonic equilibrium and disinfection / / Kader Gaid
Autore Gaid Kader
Pubbl/distr/stampa London : , : ISTE Ltd, , [2023]
Descrizione fisica 1 online resource (364 pages)
Disciplina 628.162
Soggetto topico Drinking water - Purification
Drinking water - Contamination
ISBN 1-394-22617-9
1-394-22615-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Drinking water treatment five
Record Nr. UNINA-9910830065003321
Gaid Kader  
London : , : ISTE Ltd, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wastewater Reuse, Volume 1 : Characteristics, Uses, Applications, Filtration and Disinfection of Water
Wastewater Reuse, Volume 1 : Characteristics, Uses, Applications, Filtration and Disinfection of Water
Autore Gaid Kader
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (328 pages)
Disciplina 628.162
Collana ISTE Invoiced Series
ISBN 9781394351770
1394351771
9781394351787
139435178X
9781394351763
1394351763
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1. Treated Wastewater Reuse: A New Resource -- 1.1. Observations on the current situation -- 1.2. Climate change -- 1.3. Solutions to reduce water stress -- 1.3.1. Direct and indirect reuse -- 1.4. The various purposes of reuse -- 1.5. Adapting to the local context -- 1.6. Policies and institutions to support reuse -- 1.7. Glossary -- 1.8. References -- Chapter 2. Characterization of Treated Wastewater -- 2.1. Main parameters defining the quality of treated wastewater -- 2.1.1. Indicators of organic matter: biological oxygen demand, chemical oxygen demand and total organic carbon -- 2.1.2. Suspended solids -- 2.1.3. Nitrogen -- 2.1.4. Phosphorus -- 2.1.5. Pesticides and endocrine disruptors -- 2.2. Microbiological aspects -- 2.2.1. Bacteria -- 2.2.2. Enteric viruses -- 2.2.3. Enteric protozoa -- 2.2.4. Helminth eggs -- 2.2.5. Fecal contamination indicators -- 2.3. References -- Chapter 3. Applications and Uses of Reused Water -- 3.1. The different uses -- 3.1.1. Agriculture -- 3.1.2. Reuse in industry -- 3.1.3. Groundwater recharge -- 3.1.4. Recreational and environmental areas -- 3.1.5. Urban non-food uses -- 3.1.6. Drinking water -- 3.2. References -- Chapter 4. Regulations -- 4.1. Regulations, state of the art and future challenges of municipal wastewater treatment and water reuse -- 4.2. Regulations for treated wastewater reuse in France -- 4.2.1. Application to irrigation -- 4.3. European Directive -- 4.3.1. Minimum requirements applicable to reclaimed water intended for agricultural irrigation -- 4.4. World Health Organization -- 4.4.1. Objectives of pathogen reduction for the different irrigation types -- 4.4.2. Monitoring/verification -- 4.5. Regulation on treated wastewater reuse in the United States -- 4.6. Regulation on water reuse in China -- 4.7. Australia.
4.8. Mediterranean countries and the Middle East -- 4.9. Conclusion -- 4.10. References -- Chapter 5. Treated Wastewater Reuse Planning -- 5.1. Project objectives and limitations -- 5.1.1. Preliminary investigations -- 5.1.2. Selection of potential markets -- 5.1.3. Assessment of alternatives -- 5.1.4. Awareness and education -- 5.1.5. Importance of terminology -- 5.1.6. Economic and legal aspects -- 5.2. References -- Chapter 6. Treatment Technologies -- 6.1. Use of raw wastewater -- 6.2. Bases of the treatment process concept -- 6.3. References -- Chapter 7. Tertiary Filtration -- 7.1. Gravity filtration without reagents -- 7.1.1. Rapid filters and high-rate filters (HRF) -- 7.1.2. Dual-media filters -- 7.1.3. Pressure filters -- 7.2. Gravity filtration with reagents -- 7.3. Filtration mechanisms -- 7.4. Implementation parameters -- 7.4.1. Media -- 7.4.2. Media height ratio/d10 -- 7.4.3. Effective size ratio -- 7.5. Size parameters: filtration rate and media height -- 7.5.1. Filter depth modelling -- 7.6. Operating parameters -- 7.6.1. Pressure drop in a clean filter -- 7.6.2. Retention capacity -- 7.6.3. Filter backwashing conditions -- 7.7. Filtration technologies -- 7.7.1. Conventional single-layer filters -- 7.7.2. High-rate filters -- 7.7.3. Example of tertiary filtration design on single-media filter -- 7.7.4. Dual-media filters -- 7.7.5. Filters under pressure -- 7.7.6. Performances of gravity filters -- 7.8. Mobile material filters -- 7.9. Rotary drum filters -- 7.9.1. Hydrotech filter characteristics -- 7.10. References -- Chapter 8. Disinfection -- 8.1. Microorganisms present in treated wastewater -- 8.1.1. Bacteria -- 8.1.2. Viruses -- 8.1.3. Parasites -- 8.2. General rules of chemical disinfection -- 8.2.1. Mode of action of chemical disinfectants in treated wastewater -- 8.2.2. Reduction principle of the number of germs - "Log" units.
8.3. Factors influencing the effectiveness of chemical disinfection -- 8.3.1. Turbidity -- 8.3.2. Presence of oxidizable matter -- 8.3.3. Injection mode and point -- 8.3.4. Design of the contact tank -- 8.4. Qualities of a good disinfectant -- 8.5. The main techniques of wastewater chemical disinfection -- 8.5.1. Chlorine disinfection -- 8.5.2. Chlorine dioxide disinfection -- 8.5.3. Chloramination -- 8.6. Disinfection with ozone -- 8.6.1. General information on ozone -- 8.6.2. Preparation and implementation of ozone -- 8.6.3. Transfer of ozone in water to be treated -- 8.6.4. Performance of disinfection with ozone -- 8.7. Organic peracids: performic acid and peracetic acid -- 8.7.1. Production organic peracids -- 8.7.2. Disinfection and oxidation mechanisms of organic peracids -- 8.7.3. Performic acid -- 8.7.4. Peracetic acid -- 8.7.5. Degradation kinetics of peracids -- 8.7.6. Primary, secondary and tertiary wastewater applications -- 8.8. UV disinfection -- 8.8.1. General information on UV radiation -- 8.8.2. Inactivation mechanisms -- 8.8.3. Lethal dose and inactivation kinetics -- 8.8.4. Implementation -- 8.8.5. Sizing parameters -- 8.8.6. Factors influencing UV treatment efficiency -- 8.8.7. Performance -- 8.8.8. UV disinfection advantages and disadvantages in wastewater -- 8.9. Criteria for selecting a disinfection technique -- 8.10. References -- Index -- EULA.
Record Nr. UNINA-9911019848303321
Gaid Kader  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wastewater Reuse, Volume 2 : Micropollutants, Membranes and Treatment Procedures
Wastewater Reuse, Volume 2 : Micropollutants, Membranes and Treatment Procedures
Autore Gaid Kader
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (273 pages)
Disciplina 628.162
Collana ISTE Invoiced Series
ISBN 9781394361359
1394361351
9781394361366
139436136X
9781394361342
1394361343
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1. Case Studies with Tertiary Treatment -- 1.1. Limited urban use, irrigation of non-food or processed crops -- 1.1.1. Irrigation -- 1.1.2. Industrial reuse and recycling -- 1.1.3. Urban non-drinking water -- 1.1.4. Storage -- 1.2. Nosedo plant (Milan, Italy): irrigation -- 1.3. The Hermitage station (Reunion Island) -- 1.3.1. Pollutant loads -- 1.3.2. Tertiary filtration -- 1.3.3. UV disinfection -- 1.3.4. Educational aspect -- 1.4. The Barcelona plant (Spain): regeneration of wetlands, irrigation -- 1.5. Ajman (United Arab Emirates): irrigation and non-drinkable urban use -- 1.6. Al Wathba treatment plant (Abu Dhabi): recreational areas, green spaces, industries -- 1.7. Burj Khalifa lake (Dubai): reuse wastewater for a recreational area -- 1.7.1. Treatment plant dimensions -- 1.8. Darling Quarter (Sydney, Australia): wastewater reuse in a neighborhood -- 1.9. References -- Chapter 2. Micropollutants -- 2.1. Introduction -- 2.2. Pesticides -- 2.3. Pharmaceuticals and industrial residues -- 2.4. Technologies for removing pesticides and emerging micropollutants -- 2.4.1. Conventional oxidizers: chlorine, hypochlorite and chlorine dioxide -- 2.4.2. Advanced chemical oxidation -- 2.4.3. Activated carbon adsorption -- 2.4.4. Ozone/activated carbon combination -- 2.5. References -- Chapter 3. Microfiltration and Ultrafiltration Membranes -- 3.1. Operating principle and mechanisms -- 3.1.1. Pressurized membranes -- 3.1.2. Submerged membranes -- 3.1.3. Filtration mode: frontal/tangential -- 3.2. Sizing parameters -- 3.2.1. Membrane selection -- 3.2.2. Cleaning in place -- 3.3. Microfiltration and ultrafiltration applied to wastewater treatment -- 3.3.1. Turbidity and TSS -- 3.3.2. Dissolved organic carbon -- 3.3.3. Energy consumption -- 3.4. Improved secondary treatment: membrane bioreactors.
3.4.1. Suppliers of microfiltration membranes used in MBRs -- 3.4.2. Performance -- 3.5. Membrane layout in the reuse process -- 3.6. Hybrid process: combining chemical processes with MF/UF membranes -- 3.7. Conclusion -- 3.8. References -- Chapter 4. Reverse Osmosis -- 4.1. Membranes -- 4.1.1. Materials -- 4.2. Principles of operation and separation -- 4.3. Wastewater treatment with reverse osmosis membranes -- 4.3.1. Parameters to consider when designing a treatment system -- 4.3.2. Sizing parameters -- 4.3.3. Post-treatment for drinking water supply -- 4.3.4. Disinfection downstream of membranes -- 4.4. Reverse osmosis in the wastewater reuse process -- 4.5. Performance -- 4.5.1. Pesticides -- 4.5.2. Drugs -- 4.5.3. Microorganisms -- 4.5.4. Water losses and energy consumption of membrane processes for water reuse -- 4.6. Conclusion -- 4.7. References -- Chapter 5. Applications for Drinking Water, Specific Industrial Water and Groundwater Recharge -- 5.1. Windhoek: drinking water, specific industries and groundwater recharge -- 5.2. The Durban plant (South Africa) -- 5.2.1. For industrial use requiring rigorous quality -- 5.2.2. The wastewater reuse plant -- 5.2.3. Tertiary treatment sizing -- 5.2.4. Conclusion -- 5.3. Kranji (Singapore): irrigation, indirect drinking water, specific industries -- 5.3.1. Sizing the Kranji plant -- 5.3.2. Performance -- 5.3.3. Conclusion -- 5.4. Illawarra (Australia): application, ocean protection, irrigation and industry -- 5.4.1. Characteristics of wastewater treatment plants -- 5.4.2. Treatment processes -- 5.4.3. Conclusion -- 5.5. Honolulu: irrigation and industrial applications -- 5.6. Gerringong and Gerroa (Australia): controlled irrigation and beach protection applications -- 5.6.1. Treatment process and guarantees -- 5.6.2. Microfiltration workshop -- 5.6.3. Conclusion.
5.7. Playgrounds and leisure parks (France) -- 5.8. References -- Chapter 6. What Does the Future Hold for Wastewater Reuse? -- 6.1. Challenges and prospects -- 6.2. What about drinking water? -- 6.3. Wastewater: Is it a real alternative? -- 6.4. References -- Index -- EULA.
Record Nr. UNINA-9911020131803321
Gaid Kader  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui