Categorical framework for the study of singular spaces / / William Fulton and Robert MacPherson
| Categorical framework for the study of singular spaces / / William Fulton and Robert MacPherson |
| Autore | Fulton William <1939-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1981] |
| Descrizione fisica | 1 online resource (173 p.) |
| Disciplina |
510 s
514/.24 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Homology theory
Categories (Mathematics) |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0650-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Table of Contents""; ""Part I: Bivariant theories""; ""Â1 Survey""; ""1.1 Bivariant theories""; ""1.2 Grothendieck transformations""; ""1.3 Orientations and Gysin homomorphisms""; ""1.4 Formules of Riemann-Roch type""; ""1.5 An Example""; ""1.6 Guide to [BT]""; ""1.7 Acknowledgements""; ""Â2 Bivariant Theories""; ""2.1 The underlying category""; ""2.2 Axioms for a bivariant theory""; ""2.3 Associated contravariant and covariant functors""; ""2.4 External products""; ""2.5 Gysin homomorphisms""; ""2.6 Orientations""; ""2.7 Grothendieck transformations""; ""Â3 Topological Theories""
""3.1 Construction of a bivariant theory from a cohomology theory""""3.2 Grothendieck transformations of topological theories""; ""3.3 Supports""; ""3.4 Specialization""; ""Â4 Orientations in Topology""; ""4.1 Normally non-singular maps""; ""4.2 Cohomology operations""; ""4.3 Differentiable Riemann-Roch""; ""Â5 Transfer and Fixed Point Index""; ""Â6 Whitney Classes""; ""6.1 The bivariant theory FF""; ""6.2 The Grothendieck transformation Ï?""; ""6.3 Consequences of Theorem 6A""; ""6.4 Proof of uniqueness of Ï?""; ""6.5 Construction of Ï?""; ""6.6 Applications"" ""Â7 Grothendieck Duality and Derived Functors""""7.1 Grothendieck duality""; ""7.2 Duality and Riemann-Roch""; ""7.3 Homology from derived functors""; ""7.4 Etale theory""; ""Â8 Operational Theories""; ""Â9 Rational Equivalence and Intersection Formulas""; ""9.1 Operational rational equivalence theory""; ""9.2 Intersection formulas""; ""Â10 Other Bivariant Theories; Open Problems""; ""10.1 Fixed point theorems for coherent sheaves""; ""10.2 Finite groups""; ""10.3 Orientations in algebraic geometry""; ""10.4 Chern classes""; ""10.5 Equivariant Whitney classes""; ""10.6 Verdier duality"" ""10.7 Non-submersive maps in topology""""10.8 Independent squares for algebraic K-theory""; ""10.9 Uniqueness questions""; ""10.10 Analytic Riemann-Roch""; ""10.11 Rational equivalence""; ""10.12 Higher K-theory""; ""10.13 Geometric interpretation of bivariant homology elements""; ""Part II: Products in Riemann-Roch""; ""Â0 Introduction""; ""0.1 Some history""; ""0.2 Summary of results""; ""0.3 Plan of the proof""; ""Â1 Statement of the theorem""; ""1.1 Bivariant algebraic K-theory""; ""1.2 Morphisms of finite Tor dimension""; ""1.3 Local complete intersection morphisms"" ""1.4 The Riemann-Roch theorem""""1.5 The Chern character""; ""1.6 Riemann-Roch with supports""; ""Â2 Complexes""; ""2.1 Topological complexes""; ""2.2 Some homological algebra""; ""2.3 An application""; ""2.4 The main lemma""; ""Â3 Proof of the theorem""; ""References"" |
| Record Nr. | UNINA-9910480014403321 |
Fulton William <1939->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1981] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Categorical framework for the study of singular spaces / / William Fulton and Robert MacPherson
| Categorical framework for the study of singular spaces / / William Fulton and Robert MacPherson |
| Autore | Fulton William <1939-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1981] |
| Descrizione fisica | 1 online resource (173 p.) |
| Disciplina |
510 s
514/.24 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Homology theory
Categories (Mathematics) |
| ISBN | 1-4704-0650-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Table of Contents""; ""Part I: Bivariant theories""; ""Â1 Survey""; ""1.1 Bivariant theories""; ""1.2 Grothendieck transformations""; ""1.3 Orientations and Gysin homomorphisms""; ""1.4 Formules of Riemann-Roch type""; ""1.5 An Example""; ""1.6 Guide to [BT]""; ""1.7 Acknowledgements""; ""Â2 Bivariant Theories""; ""2.1 The underlying category""; ""2.2 Axioms for a bivariant theory""; ""2.3 Associated contravariant and covariant functors""; ""2.4 External products""; ""2.5 Gysin homomorphisms""; ""2.6 Orientations""; ""2.7 Grothendieck transformations""; ""Â3 Topological Theories""
""3.1 Construction of a bivariant theory from a cohomology theory""""3.2 Grothendieck transformations of topological theories""; ""3.3 Supports""; ""3.4 Specialization""; ""Â4 Orientations in Topology""; ""4.1 Normally non-singular maps""; ""4.2 Cohomology operations""; ""4.3 Differentiable Riemann-Roch""; ""Â5 Transfer and Fixed Point Index""; ""Â6 Whitney Classes""; ""6.1 The bivariant theory FF""; ""6.2 The Grothendieck transformation Ï?""; ""6.3 Consequences of Theorem 6A""; ""6.4 Proof of uniqueness of Ï?""; ""6.5 Construction of Ï?""; ""6.6 Applications"" ""Â7 Grothendieck Duality and Derived Functors""""7.1 Grothendieck duality""; ""7.2 Duality and Riemann-Roch""; ""7.3 Homology from derived functors""; ""7.4 Etale theory""; ""Â8 Operational Theories""; ""Â9 Rational Equivalence and Intersection Formulas""; ""9.1 Operational rational equivalence theory""; ""9.2 Intersection formulas""; ""Â10 Other Bivariant Theories; Open Problems""; ""10.1 Fixed point theorems for coherent sheaves""; ""10.2 Finite groups""; ""10.3 Orientations in algebraic geometry""; ""10.4 Chern classes""; ""10.5 Equivariant Whitney classes""; ""10.6 Verdier duality"" ""10.7 Non-submersive maps in topology""""10.8 Independent squares for algebraic K-theory""; ""10.9 Uniqueness questions""; ""10.10 Analytic Riemann-Roch""; ""10.11 Rational equivalence""; ""10.12 Higher K-theory""; ""10.13 Geometric interpretation of bivariant homology elements""; ""Part II: Products in Riemann-Roch""; ""Â0 Introduction""; ""0.1 Some history""; ""0.2 Summary of results""; ""0.3 Plan of the proof""; ""Â1 Statement of the theorem""; ""1.1 Bivariant algebraic K-theory""; ""1.2 Morphisms of finite Tor dimension""; ""1.3 Local complete intersection morphisms"" ""1.4 The Riemann-Roch theorem""""1.5 The Chern character""; ""1.6 Riemann-Roch with supports""; ""Â2 Complexes""; ""2.1 Topological complexes""; ""2.2 Some homological algebra""; ""2.3 An application""; ""2.4 The main lemma""; ""Â3 Proof of the theorem""; ""References"" |
| Record Nr. | UNINA-9910788895103321 |
Fulton William <1939->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1981] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Categorical framework for the study of singular spaces / / William Fulton and Robert MacPherson
| Categorical framework for the study of singular spaces / / William Fulton and Robert MacPherson |
| Autore | Fulton William <1939-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1981] |
| Descrizione fisica | 1 online resource (173 p.) |
| Disciplina |
510 s
514/.24 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Homology theory
Categories (Mathematics) |
| ISBN | 1-4704-0650-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Table of Contents""; ""Part I: Bivariant theories""; ""Â1 Survey""; ""1.1 Bivariant theories""; ""1.2 Grothendieck transformations""; ""1.3 Orientations and Gysin homomorphisms""; ""1.4 Formules of Riemann-Roch type""; ""1.5 An Example""; ""1.6 Guide to [BT]""; ""1.7 Acknowledgements""; ""Â2 Bivariant Theories""; ""2.1 The underlying category""; ""2.2 Axioms for a bivariant theory""; ""2.3 Associated contravariant and covariant functors""; ""2.4 External products""; ""2.5 Gysin homomorphisms""; ""2.6 Orientations""; ""2.7 Grothendieck transformations""; ""Â3 Topological Theories""
""3.1 Construction of a bivariant theory from a cohomology theory""""3.2 Grothendieck transformations of topological theories""; ""3.3 Supports""; ""3.4 Specialization""; ""Â4 Orientations in Topology""; ""4.1 Normally non-singular maps""; ""4.2 Cohomology operations""; ""4.3 Differentiable Riemann-Roch""; ""Â5 Transfer and Fixed Point Index""; ""Â6 Whitney Classes""; ""6.1 The bivariant theory FF""; ""6.2 The Grothendieck transformation Ï?""; ""6.3 Consequences of Theorem 6A""; ""6.4 Proof of uniqueness of Ï?""; ""6.5 Construction of Ï?""; ""6.6 Applications"" ""Â7 Grothendieck Duality and Derived Functors""""7.1 Grothendieck duality""; ""7.2 Duality and Riemann-Roch""; ""7.3 Homology from derived functors""; ""7.4 Etale theory""; ""Â8 Operational Theories""; ""Â9 Rational Equivalence and Intersection Formulas""; ""9.1 Operational rational equivalence theory""; ""9.2 Intersection formulas""; ""Â10 Other Bivariant Theories; Open Problems""; ""10.1 Fixed point theorems for coherent sheaves""; ""10.2 Finite groups""; ""10.3 Orientations in algebraic geometry""; ""10.4 Chern classes""; ""10.5 Equivariant Whitney classes""; ""10.6 Verdier duality"" ""10.7 Non-submersive maps in topology""""10.8 Independent squares for algebraic K-theory""; ""10.9 Uniqueness questions""; ""10.10 Analytic Riemann-Roch""; ""10.11 Rational equivalence""; ""10.12 Higher K-theory""; ""10.13 Geometric interpretation of bivariant homology elements""; ""Part II: Products in Riemann-Roch""; ""Â0 Introduction""; ""0.1 Some history""; ""0.2 Summary of results""; ""0.3 Plan of the proof""; ""Â1 Statement of the theorem""; ""1.1 Bivariant algebraic K-theory""; ""1.2 Morphisms of finite Tor dimension""; ""1.3 Local complete intersection morphisms"" ""1.4 The Riemann-Roch theorem""""1.5 The Chern character""; ""1.6 Riemann-Roch with supports""; ""Â2 Complexes""; ""2.1 Topological complexes""; ""2.2 Some homological algebra""; ""2.3 An application""; ""2.4 The main lemma""; ""Â3 Proof of the theorem""; ""References"" |
| Record Nr. | UNINA-9910829189203321 |
Fulton William <1939->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1981] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Curvas algebraicas : introducción a la geometría algebraica / / William Fulton
| Curvas algebraicas : introducción a la geometría algebraica / / William Fulton |
| Autore | Fulton William <1939-> |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Barcelona, España : , : Editorial Reverté, , 2005 |
| Descrizione fisica | 1 recurso en línea (147 páginas) |
| Disciplina | 516.352 |
| Soggetto topico |
Curves, Algebraic
Geometry, Algebraic |
| ISBN | 84-291-9117-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | spa |
| Altri titoli varianti | Introducción a la geometría algebraica |
| Record Nr. | UNINA-9910794442703321 |
Fulton William <1939->
|
||
| Barcelona, España : , : Editorial Reverté, , 2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Curvas algebraicas : introducción a la geometría algebraica / / William Fulton
| Curvas algebraicas : introducción a la geometría algebraica / / William Fulton |
| Autore | Fulton William <1939-> |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Barcelona, España : , : Editorial Reverté, , 2005 |
| Descrizione fisica | 1 recurso en línea (147 páginas) |
| Disciplina | 516.352 |
| Soggetto topico |
Curves, Algebraic
Geometry, Algebraic |
| ISBN | 84-291-9117-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | spa |
| Altri titoli varianti | Introducción a la geometría algebraica |
| Record Nr. | UNINA-9910817035103321 |
Fulton William <1939->
|
||
| Barcelona, España : , : Editorial Reverté, , 2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Intersection Theory / / by William Fulton
| Intersection Theory / / by William Fulton |
| Autore | Fulton William <1939-> |
| Edizione | [2nd ed. 1998.] |
| Pubbl/distr/stampa | New York, NY : , : Springer New York : , : Imprint : Springer, , 1998 |
| Descrizione fisica | 1 online resource (XIII, 470 p.) |
| Disciplina | 516.3/5 |
| Collana | Ergebnisse der Mathematik und ihrer Grenzgebiete |
| Soggetto topico |
Geometry, Algebraic
Algebraic Geometry |
| ISBN |
9781461217008
1461217008 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Rational Equivalence -- 2. Divisors -- 3. Vector Bundles and Chern Classes -- 4. Cones and Segre Classes -- 5. Deformation to the Normal Cone -- 6. Intersection Products -- 7. Intersection Multiplicities -- 8. Intersections on Non-singular Varieties -- 9. Excess and Residual Intersections -- 10. Families of Algebraic Cycles -- 11. Dynamic Intersections -- 12. Positivity -- 13. Rationality -- 14. Degeneracy Loci and Grassmannians -- 15. Riemann-Roch for Non-singular Varieties -- 16. Correspondences -- 17. Bivariant Intersection Theory -- 18. Riemann-Roch for Singular Varieties -- 19. Algebraic, Homological and Numerical Equivalence -- 20. Generalizations -- Appendix A. Algebra -- Appendix B. Algebraic Geometry (Glossary) -- Notation. |
| Record Nr. | UNINA-9910971122703321 |
Fulton William <1939->
|
||
| New York, NY : , : Springer New York : , : Imprint : Springer, , 1998 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Schubert varieties and degeneracy loci / / William Fulton, Piotr Pragacz
| Schubert varieties and degeneracy loci / / William Fulton, Piotr Pragacz |
| Autore | Fulton William <1939-> |
| Edizione | [1st ed. 1998.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer-Verlag, , [1998] |
| Descrizione fisica | 1 online resource (X, 150 p.) |
| Disciplina | 516.35 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Schubert varieties
Intersection theory (Mathematics) Vector bundles |
| ISBN | 3-540-69804-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | to degeneracy loci and schubert polynomials -- Modern formulation; Grassmannians, flag varieties, schubert varieties -- Symmetric polynomials useful in geometry -- Polynomials supported on degeneracy loci -- The Euler characteristic of degeneracy loci -- Flag bundles and determinantal formulas for the other classical groups -- and polynomial formulas for other classical groups -- The classes of Brill-Noether loci in Prym varieties -- Applications and open problems. |
| Record Nr. | UNISA-996466872403316 |
Fulton William <1939->
|
||
| Berlin, Heidelberg : , : Springer-Verlag, , [1998] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Schubert Varieties and Degeneracy Loci / / by William Fulton, Piotr Pragacz
| Schubert Varieties and Degeneracy Loci / / by William Fulton, Piotr Pragacz |
| Autore | Fulton William <1939-> |
| Edizione | [1st ed. 1998.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1998 |
| Descrizione fisica | 1 online resource (X, 150 p.) |
| Disciplina | 516.35 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Geometry, Algebraic
Discrete mathematics Group theory Algebraic topology Algebraic Geometry Discrete Mathematics Group Theory and Generalizations Algebraic Topology |
| ISBN | 3-540-69804-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | to degeneracy loci and schubert polynomials -- Modern formulation; Grassmannians, flag varieties, schubert varieties -- Symmetric polynomials useful in geometry -- Polynomials supported on degeneracy loci -- The Euler characteristic of degeneracy loci -- Flag bundles and determinantal formulas for the other classical groups -- and polynomial formulas for other classical groups -- The classes of Brill-Noether loci in Prym varieties -- Applications and open problems. |
| Record Nr. | UNINA-9910146302703321 |
Fulton William <1939->
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1998 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||