top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Hybrid perovskite solar cells : characteristics and operation / / editor, Hiroyuki Fujiwara
Hybrid perovskite solar cells : characteristics and operation / / editor, Hiroyuki Fujiwara
Edizione [1st edition.]
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2022]
Descrizione fisica 1 online resource (606 pages)
Disciplina 621.381542
Soggetto topico Photovoltaic cells
Perovskite (Mineral) - Industrial applications
Soggetto genere / forma Electronic books.
ISBN 3-527-82585-1
3-527-82584-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editor -- Chapter 1 Introduction -- 1.1 Hybrid Perovskite Solar Cells -- 1.2 Unique Natures of Hybrid Perovskites -- 1.2.1 Notable Characteristics of Hybrid Perovskites -- 1.2.2 Fundamental Properties of MAPbI3 -- 1.2.3 Why Hybrid Perovskite Solar Cells Show High Efficiency? -- 1.3 Advantages of Hybrid Perovskite Solar Cells -- 1.3.1 Band Gap Tunability -- 1.3.2 High Voc -- 1.3.3 Low Temperature Coefficient -- 1.4 Challenges for Hybrid Perovskites -- 1.4.1 Requirement of Improved Stability -- 1.4.2 Large‐Area Solar Cells -- 1.4.3 Toxicity of Pb and Sn Compounds -- 1.5 Overview of this Book -- Acknowledgment -- References -- Chapter 2 Overview of Hybrid Perovskite Solar Cells -- 2.1 Introduction -- 2.2 Historical Backgrounds of Halide Perovskite Photovoltaics -- 2.3 Semiconductor Properties of Organo Lead Halide Perovskites -- 2.4 Working Principle of Perovskite Photovoltaics -- 2.5 Compositional Design of the Halide Perovskite Absorbers -- 2.6 Strategy for Stabilizing Perovskite Solar Cells -- 2.7 All Inorganic and Lead‐Free Perovskites -- 2.8 Development of High‐Efficiency Tandem Solar Cells -- 2.9 Conclusion and Perspectives -- References -- Part I Characteristics of Hybrid Perovskites -- Chapter 3 Crystal Structures -- 3.1 What Is Hybrid Perovskite? -- 3.2 Structures of Hybrid Perovskite Crystals -- 3.2.1 Crystal Structure of MAPbI3 -- 3.2.2 Lattice Parameters of Hybrid Perovskites -- 3.2.3 Secondary Phase Materials -- 3.3 Tolerance Factor -- 3.3.1 Tolerance Factor of Hybrid Perovskites -- 3.3.2 Tolerance Factor of Mixed‐Cation Perovskites -- 3.4 Phase Change by Temperature -- 3.5 Refined Structures of Hybrid Perovskites -- 3.5.1 Orientation of Center Cations -- 3.5.2 Relaxation of Center Cations -- Acknowledgment -- References -- Chapter 4 Optical Properties.
4.1 Introduction -- 4.2 Light Absorption in MAPbI3 -- 4.2.1 Visible/UV Region -- 4.2.2 IR Region -- 4.2.3 THz Region -- 4.3 Band Gap of Hybrid Perovskites -- 4.3.1 Band Gap Analysis of MAPbI3 -- 4.3.2 Band Gap of Basic Perovskites -- 4.3.3 Band Gap Variation in Perovskite Alloys -- 4.4 True Absorption Coefficient of MAPbI3 -- 4.4.1 Principles of Optical Measurements -- 4.4.2 Interpretation of α Variation -- 4.5 Universal Rules for Hybrid Perovskite Optical Properties -- 4.5.1 Variation with Center Cation -- 4.5.2 Variation with Halide Anion -- 4.6 Subgap Absorption Characteristics -- 4.7 Temperature Effect on Absorption Properties -- 4.8 Excitonic Properties of Hybrid Perovskites -- References -- Chapter 5 Physical Properties Determined by Density Functional Theory -- 5.1 Introduction -- 5.2 What Is DFT? -- 5.2.1 Basic Principles -- 5.2.2 Assumptions and Limitations -- 5.3 Crystal Structures Determined by DFT -- 5.3.1 Hybrid Perovskite Structures -- 5.3.2 Organic‐Center Cations -- 5.4 Band Structures -- 5.4.1 Band Structures of Hybrid Perovskites -- 5.4.2 Direct-Indirect Issue of Hybrid Perovskite -- 5.4.3 Density of States -- 5.4.4 Effective Mass -- 5.5 Band Gap -- 5.5.1 What Determines Band Gap? -- 5.5.2 Effect of Center Cation -- 5.5.3 Effect of Halide Anion -- 5.6 Defect Physics -- Acknowledgment -- References -- Chapter 6 Carrier Transport Properties -- 6.1 Introduction -- 6.2 Carrier Properties of Hybrid Perovskites -- 6.2.1 Self‐Doping in Hybrid Perovskites -- 6.2.2 Effect of Carrier Concentration on Mobility -- 6.3 Carrier Mobility of MAPbI3 -- 6.3.1 Variation of Mobility with Characterization Method -- 6.3.2 Temperature Dependence -- 6.3.3 Effect of Effective Mass -- 6.3.4 What Determines Maximum Mobility of MAPbI3? -- 6.4 Diffusion Length -- 6.5 Carrier Transport in Various Hybrid Perovskites -- References.
Chapter 7 Ferroelectric Properties -- 7.1 On the Importance of Ferroelectricity in Hybrid Perovskite Solar Cells -- 7.2 Ferroelectricity -- 7.2.1 Crystallographic Considerations -- 7.2.2 Ferroelectricity in Thin Films -- 7.2.3 Crystallography of MAPbI3 Thin Films -- 7.3 Probing Ferroelectricity on the Microscale -- 7.3.1 Atomic Force Microscopy -- 7.3.2 Piezoresponse Force Microscopy -- 7.3.3 Characterization of MAPbI3 Thin Films with sf‐PFM -- 7.3.4 Correlative Domain Characterization -- 7.3.4.1 Transmission Electron Microscopy -- 7.3.4.2 X‐ray Diffraction -- 7.3.4.3 Electron Backscatter Diffraction -- 7.3.4.4 Kelvin Probe Force Microscopy -- 7.3.5 Polarization Orientation -- 7.3.6 Ferroelastic Effects in MAPbI3 Thin Films -- 7.4 Ferroelectric Poling of MAPbI3 -- 7.4.1 AC Poling of MAPbI3 -- 7.4.2 Creeping Poling and Switching Events on the Microscopic Scale -- 7.4.3 Macroscopic Effects of Poling -- 7.5 Impact of Ferroelectricity on the Performance of Solar Cells -- 7.5.1 Pitfalls During Sample Measurements -- 7.5.2 Charge Carrier Dynamics in Solar Cells -- References -- Chapter 8 Photoluminescence Properties -- 8.1 Introduction -- 8.2 Overview of Luminescent Properties -- 8.3 Room‐Temperature PL Spectra of a Hybrid Perovskite Thin Film -- 8.4 Time‐Resolved PL of a Hybrid Perovskite -- 8.5 PL Quantum Efficiency -- 8.6 Temperature‐Dependent PL -- 8.7 Material and Device Characterization by PL Spectroscopy -- 8.7.1 Degradation and Healing of Hybrid Perovskites -- 8.7.2 Charge Transfer Mechanism in Perovskite Solar Cell -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Role of Grain Boundaries -- 9.1 Introduction -- 9.2 Role of Grain Boundaries in Device Performance -- 9.2.1 Potential Barrier at GBs and Charge Transport -- 9.2.2 Engineering of GB Properties -- 9.3 Ion Migration Through Grain Boundaries.
9.3.1 Enhanced Ion Transport at Grain Boundaries -- 9.3.2 Role of GBs for Ion Migration -- 9.4 Role of Grain Boundaries in Stability -- 9.4.1 MAPbI3 Hydrated Phase at GBs -- 9.4.2 Formation of Non‐perovskite Phase at GBs of FAPbI3 -- References -- Chapter 10 Roles of Center Cations -- 10.1 Introduction -- 10.2 Cubic Perovskite Phase Tolerance Factor -- 10.3 Thin Film Stability -- 10.4 Optoelectronic Property Variations -- 10.5 Solar Cell Performance -- References -- Part II Hybrid Perovskite Solar Cells -- Chapter 11 Operational Principles of Hybrid Perovskite Solar Cells -- 11.1 Introduction -- 11.2 Operation of Hybrid Perovskite Solar Cells -- 11.2.1 Operational Principle and Basic Structures -- 11.2.2 Band Alignment -- 11.3 Band Diagram of Hybrid Perovskite Solar Cells -- 11.3.1 Device Simulation -- 11.3.2 Experimental Observation -- 11.4 Refined Analyses of Hybrid Perovskite Solar Cells -- 11.4.1 Carrier Generation and Loss -- 11.4.2 Power Loss Mechanism -- 11.4.3 e‐ARC Software -- 11.5 What Determines Voc? -- 11.5.1 Effect of Interface -- 11.5.2 Effect of Passivation -- 11.5.3 Effect of Grain Boundary -- References -- Chapter 12 Efficiency Limits of Single and Tandem Solar Cells -- 12.1 Introduction -- 12.2 What Is the SQ Limit? -- 12.2.1 Physical Model -- 12.2.2 Blackbody Radiation -- 12.2.3 SQ Limit -- 12.3 Maximum Efficiencies of Perovskite Single Cells -- 12.3.1 Concept of Thin‐Film Limit -- 12.3.2 EQE Calculation Method -- 12.3.3 Maximum Efficiencies of Single Solar Cells -- 12.3.4 Performance‐Limiting Factors of Hybrid Perovskite Devices -- 12.4 Maximum Efficiency of Tandem Cells -- 12.4.1 Optical Model and Assumptions -- 12.4.2 Calculation of Tandem‐Cell EQE Spectra -- 12.4.3 Maximum Efficiencies of Tandem Devices -- 12.4.4 Realistic Maximum Efficiency of Tandem Cell -- 12.5 Free Software for Efficiency Limit Calculation -- References.
Chapter 13 Multi‐cation Hybrid Perovskite Solar Cells -- 13.1 Introduction -- 13.2 Types of A‐Site Multi‐cation Hybrid Perovskite Solar Cells -- 13.2.1 Pb‐Based Multi‐cation Hybrid Perovskite Solar Cells -- 13.2.2 Sn‐Based Multi‐cation Hybrid Perovskite Solar Cells -- 13.3 Cation Selection in Mixed‐Cation Hybrid Perovskite Solar Cells -- 13.3.1 Organic A‐Cations -- 13.3.2 Inorganic A‐Cations -- 13.4 Fabrication of Mixed‐Cation Hybrid Perovskite Solar Cells -- 13.4.1 Traditional Fabrication Approach -- 13.4.2 Emerging Fabrication Technologies -- 13.5 Charge Transport Materials -- 13.6 Surface Passivation -- 13.7 Mixed B‐Cation Hybrid Organic-Inorganic Perovskite Solar Cells -- 13.8 Basic Characterization of Mixed‐Cation Hybrid Perovskite Solar Cells -- References -- Chapter 14 Tin Halide Perovskite Solar Cells -- 14.1 Introduction -- 14.1.1 Device Structure and Operating Principle -- 14.1.2 Crystal Structure -- 14.2 Tin Perovskite Solar Cells -- 14.2.1 Intrinsic Properties -- 14.2.2 Carrier Lifetime and Diffusion Length -- 14.3 The Status of Sn Perovskite Solar Cells -- 14.3.1 Different Type of Sn Perovskite Solar Cells -- 14.3.1.1 CsSnI3 -- 14.3.1.2 MASnI3 -- 14.3.1.3 FASnI3 -- 14.3.1.4 FAxMA1−xSnI3 -- 14.3.1.5 2D/3D FASnI3 -- 14.3.1.6 Sn-Ge mixed PSCs -- 14.3.2 Strategies to Improve the Efficiency -- 14.3.2.1 Film Fabrication Methods -- 14.3.2.2 Use of Reducing Agents -- 14.3.2.3 Doping Effect of Large Organic Cations -- 14.3.2.4 Device Engineering and Lattice Relaxation -- 14.4 Sn-Pb Perovskite Solar Cells -- 14.4.1 Anomalous Bandgap of SnPb (The Bowing Effect) -- 14.4.2 Physical Properties -- 14.4.2.1 Intrinsic Carrier Concentration -- 14.4.2.2 Carrier Lifetime and Diffusion Length -- 14.5 The Status of Sn-Pb Perovskite Solar Cells -- 14.5.1 Different Types of Sn-Pb Perovskite Solar Cells -- 14.5.1.1 First Kind of Sn-Pb PSC absorber: MASnxPb1−xI3.
14.5.1.2 Multi Cation Sn-Pb Perovskites: (FA, MA, Cs) (Sn, Pb) (I, Br, Cl)3.
Record Nr. UNINA-9910555011903321
Weinheim, Germany : , : Wiley-VCH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hybrid perovskite solar cells : characteristics and operation / / editor, Hiroyuki Fujiwara
Hybrid perovskite solar cells : characteristics and operation / / editor, Hiroyuki Fujiwara
Edizione [1st edition.]
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2022]
Descrizione fisica 1 online resource (606 pages)
Disciplina 621.381542
Soggetto topico Photovoltaic cells
Perovskite (Mineral) - Industrial applications
ISBN 3-527-82585-1
3-527-82584-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editor -- Chapter 1 Introduction -- 1.1 Hybrid Perovskite Solar Cells -- 1.2 Unique Natures of Hybrid Perovskites -- 1.2.1 Notable Characteristics of Hybrid Perovskites -- 1.2.2 Fundamental Properties of MAPbI3 -- 1.2.3 Why Hybrid Perovskite Solar Cells Show High Efficiency? -- 1.3 Advantages of Hybrid Perovskite Solar Cells -- 1.3.1 Band Gap Tunability -- 1.3.2 High Voc -- 1.3.3 Low Temperature Coefficient -- 1.4 Challenges for Hybrid Perovskites -- 1.4.1 Requirement of Improved Stability -- 1.4.2 Large‐Area Solar Cells -- 1.4.3 Toxicity of Pb and Sn Compounds -- 1.5 Overview of this Book -- Acknowledgment -- References -- Chapter 2 Overview of Hybrid Perovskite Solar Cells -- 2.1 Introduction -- 2.2 Historical Backgrounds of Halide Perovskite Photovoltaics -- 2.3 Semiconductor Properties of Organo Lead Halide Perovskites -- 2.4 Working Principle of Perovskite Photovoltaics -- 2.5 Compositional Design of the Halide Perovskite Absorbers -- 2.6 Strategy for Stabilizing Perovskite Solar Cells -- 2.7 All Inorganic and Lead‐Free Perovskites -- 2.8 Development of High‐Efficiency Tandem Solar Cells -- 2.9 Conclusion and Perspectives -- References -- Part I Characteristics of Hybrid Perovskites -- Chapter 3 Crystal Structures -- 3.1 What Is Hybrid Perovskite? -- 3.2 Structures of Hybrid Perovskite Crystals -- 3.2.1 Crystal Structure of MAPbI3 -- 3.2.2 Lattice Parameters of Hybrid Perovskites -- 3.2.3 Secondary Phase Materials -- 3.3 Tolerance Factor -- 3.3.1 Tolerance Factor of Hybrid Perovskites -- 3.3.2 Tolerance Factor of Mixed‐Cation Perovskites -- 3.4 Phase Change by Temperature -- 3.5 Refined Structures of Hybrid Perovskites -- 3.5.1 Orientation of Center Cations -- 3.5.2 Relaxation of Center Cations -- Acknowledgment -- References -- Chapter 4 Optical Properties.
4.1 Introduction -- 4.2 Light Absorption in MAPbI3 -- 4.2.1 Visible/UV Region -- 4.2.2 IR Region -- 4.2.3 THz Region -- 4.3 Band Gap of Hybrid Perovskites -- 4.3.1 Band Gap Analysis of MAPbI3 -- 4.3.2 Band Gap of Basic Perovskites -- 4.3.3 Band Gap Variation in Perovskite Alloys -- 4.4 True Absorption Coefficient of MAPbI3 -- 4.4.1 Principles of Optical Measurements -- 4.4.2 Interpretation of α Variation -- 4.5 Universal Rules for Hybrid Perovskite Optical Properties -- 4.5.1 Variation with Center Cation -- 4.5.2 Variation with Halide Anion -- 4.6 Subgap Absorption Characteristics -- 4.7 Temperature Effect on Absorption Properties -- 4.8 Excitonic Properties of Hybrid Perovskites -- References -- Chapter 5 Physical Properties Determined by Density Functional Theory -- 5.1 Introduction -- 5.2 What Is DFT? -- 5.2.1 Basic Principles -- 5.2.2 Assumptions and Limitations -- 5.3 Crystal Structures Determined by DFT -- 5.3.1 Hybrid Perovskite Structures -- 5.3.2 Organic‐Center Cations -- 5.4 Band Structures -- 5.4.1 Band Structures of Hybrid Perovskites -- 5.4.2 Direct-Indirect Issue of Hybrid Perovskite -- 5.4.3 Density of States -- 5.4.4 Effective Mass -- 5.5 Band Gap -- 5.5.1 What Determines Band Gap? -- 5.5.2 Effect of Center Cation -- 5.5.3 Effect of Halide Anion -- 5.6 Defect Physics -- Acknowledgment -- References -- Chapter 6 Carrier Transport Properties -- 6.1 Introduction -- 6.2 Carrier Properties of Hybrid Perovskites -- 6.2.1 Self‐Doping in Hybrid Perovskites -- 6.2.2 Effect of Carrier Concentration on Mobility -- 6.3 Carrier Mobility of MAPbI3 -- 6.3.1 Variation of Mobility with Characterization Method -- 6.3.2 Temperature Dependence -- 6.3.3 Effect of Effective Mass -- 6.3.4 What Determines Maximum Mobility of MAPbI3? -- 6.4 Diffusion Length -- 6.5 Carrier Transport in Various Hybrid Perovskites -- References.
Chapter 7 Ferroelectric Properties -- 7.1 On the Importance of Ferroelectricity in Hybrid Perovskite Solar Cells -- 7.2 Ferroelectricity -- 7.2.1 Crystallographic Considerations -- 7.2.2 Ferroelectricity in Thin Films -- 7.2.3 Crystallography of MAPbI3 Thin Films -- 7.3 Probing Ferroelectricity on the Microscale -- 7.3.1 Atomic Force Microscopy -- 7.3.2 Piezoresponse Force Microscopy -- 7.3.3 Characterization of MAPbI3 Thin Films with sf‐PFM -- 7.3.4 Correlative Domain Characterization -- 7.3.4.1 Transmission Electron Microscopy -- 7.3.4.2 X‐ray Diffraction -- 7.3.4.3 Electron Backscatter Diffraction -- 7.3.4.4 Kelvin Probe Force Microscopy -- 7.3.5 Polarization Orientation -- 7.3.6 Ferroelastic Effects in MAPbI3 Thin Films -- 7.4 Ferroelectric Poling of MAPbI3 -- 7.4.1 AC Poling of MAPbI3 -- 7.4.2 Creeping Poling and Switching Events on the Microscopic Scale -- 7.4.3 Macroscopic Effects of Poling -- 7.5 Impact of Ferroelectricity on the Performance of Solar Cells -- 7.5.1 Pitfalls During Sample Measurements -- 7.5.2 Charge Carrier Dynamics in Solar Cells -- References -- Chapter 8 Photoluminescence Properties -- 8.1 Introduction -- 8.2 Overview of Luminescent Properties -- 8.3 Room‐Temperature PL Spectra of a Hybrid Perovskite Thin Film -- 8.4 Time‐Resolved PL of a Hybrid Perovskite -- 8.5 PL Quantum Efficiency -- 8.6 Temperature‐Dependent PL -- 8.7 Material and Device Characterization by PL Spectroscopy -- 8.7.1 Degradation and Healing of Hybrid Perovskites -- 8.7.2 Charge Transfer Mechanism in Perovskite Solar Cell -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Role of Grain Boundaries -- 9.1 Introduction -- 9.2 Role of Grain Boundaries in Device Performance -- 9.2.1 Potential Barrier at GBs and Charge Transport -- 9.2.2 Engineering of GB Properties -- 9.3 Ion Migration Through Grain Boundaries.
9.3.1 Enhanced Ion Transport at Grain Boundaries -- 9.3.2 Role of GBs for Ion Migration -- 9.4 Role of Grain Boundaries in Stability -- 9.4.1 MAPbI3 Hydrated Phase at GBs -- 9.4.2 Formation of Non‐perovskite Phase at GBs of FAPbI3 -- References -- Chapter 10 Roles of Center Cations -- 10.1 Introduction -- 10.2 Cubic Perovskite Phase Tolerance Factor -- 10.3 Thin Film Stability -- 10.4 Optoelectronic Property Variations -- 10.5 Solar Cell Performance -- References -- Part II Hybrid Perovskite Solar Cells -- Chapter 11 Operational Principles of Hybrid Perovskite Solar Cells -- 11.1 Introduction -- 11.2 Operation of Hybrid Perovskite Solar Cells -- 11.2.1 Operational Principle and Basic Structures -- 11.2.2 Band Alignment -- 11.3 Band Diagram of Hybrid Perovskite Solar Cells -- 11.3.1 Device Simulation -- 11.3.2 Experimental Observation -- 11.4 Refined Analyses of Hybrid Perovskite Solar Cells -- 11.4.1 Carrier Generation and Loss -- 11.4.2 Power Loss Mechanism -- 11.4.3 e‐ARC Software -- 11.5 What Determines Voc? -- 11.5.1 Effect of Interface -- 11.5.2 Effect of Passivation -- 11.5.3 Effect of Grain Boundary -- References -- Chapter 12 Efficiency Limits of Single and Tandem Solar Cells -- 12.1 Introduction -- 12.2 What Is the SQ Limit? -- 12.2.1 Physical Model -- 12.2.2 Blackbody Radiation -- 12.2.3 SQ Limit -- 12.3 Maximum Efficiencies of Perovskite Single Cells -- 12.3.1 Concept of Thin‐Film Limit -- 12.3.2 EQE Calculation Method -- 12.3.3 Maximum Efficiencies of Single Solar Cells -- 12.3.4 Performance‐Limiting Factors of Hybrid Perovskite Devices -- 12.4 Maximum Efficiency of Tandem Cells -- 12.4.1 Optical Model and Assumptions -- 12.4.2 Calculation of Tandem‐Cell EQE Spectra -- 12.4.3 Maximum Efficiencies of Tandem Devices -- 12.4.4 Realistic Maximum Efficiency of Tandem Cell -- 12.5 Free Software for Efficiency Limit Calculation -- References.
Chapter 13 Multi‐cation Hybrid Perovskite Solar Cells -- 13.1 Introduction -- 13.2 Types of A‐Site Multi‐cation Hybrid Perovskite Solar Cells -- 13.2.1 Pb‐Based Multi‐cation Hybrid Perovskite Solar Cells -- 13.2.2 Sn‐Based Multi‐cation Hybrid Perovskite Solar Cells -- 13.3 Cation Selection in Mixed‐Cation Hybrid Perovskite Solar Cells -- 13.3.1 Organic A‐Cations -- 13.3.2 Inorganic A‐Cations -- 13.4 Fabrication of Mixed‐Cation Hybrid Perovskite Solar Cells -- 13.4.1 Traditional Fabrication Approach -- 13.4.2 Emerging Fabrication Technologies -- 13.5 Charge Transport Materials -- 13.6 Surface Passivation -- 13.7 Mixed B‐Cation Hybrid Organic-Inorganic Perovskite Solar Cells -- 13.8 Basic Characterization of Mixed‐Cation Hybrid Perovskite Solar Cells -- References -- Chapter 14 Tin Halide Perovskite Solar Cells -- 14.1 Introduction -- 14.1.1 Device Structure and Operating Principle -- 14.1.2 Crystal Structure -- 14.2 Tin Perovskite Solar Cells -- 14.2.1 Intrinsic Properties -- 14.2.2 Carrier Lifetime and Diffusion Length -- 14.3 The Status of Sn Perovskite Solar Cells -- 14.3.1 Different Type of Sn Perovskite Solar Cells -- 14.3.1.1 CsSnI3 -- 14.3.1.2 MASnI3 -- 14.3.1.3 FASnI3 -- 14.3.1.4 FAxMA1−xSnI3 -- 14.3.1.5 2D/3D FASnI3 -- 14.3.1.6 Sn-Ge mixed PSCs -- 14.3.2 Strategies to Improve the Efficiency -- 14.3.2.1 Film Fabrication Methods -- 14.3.2.2 Use of Reducing Agents -- 14.3.2.3 Doping Effect of Large Organic Cations -- 14.3.2.4 Device Engineering and Lattice Relaxation -- 14.4 Sn-Pb Perovskite Solar Cells -- 14.4.1 Anomalous Bandgap of SnPb (The Bowing Effect) -- 14.4.2 Physical Properties -- 14.4.2.1 Intrinsic Carrier Concentration -- 14.4.2.2 Carrier Lifetime and Diffusion Length -- 14.5 The Status of Sn-Pb Perovskite Solar Cells -- 14.5.1 Different Types of Sn-Pb Perovskite Solar Cells -- 14.5.1.1 First Kind of Sn-Pb PSC absorber: MASnxPb1−xI3.
14.5.1.2 Multi Cation Sn-Pb Perovskites: (FA, MA, Cs) (Sn, Pb) (I, Br, Cl)3.
Record Nr. UNINA-9910830531003321
Weinheim, Germany : , : Wiley-VCH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spectroscopic Ellipsometry for Photovoltaics : Volume 1: Fundamental Principles and Solar Cell Characterization / / edited by Hiroyuki Fujiwara, Robert W. Collins
Spectroscopic Ellipsometry for Photovoltaics : Volume 1: Fundamental Principles and Solar Cell Characterization / / edited by Hiroyuki Fujiwara, Robert W. Collins
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XX, 594 p. 336 illus., 266 illus. in color.)
Disciplina 620.11295
Collana Springer Series in Optical Sciences
Soggetto topico Lasers
Photonics
Optical materials
Electronic materials
Microwaves
Optical engineering
Renewable energy resources
Optics, Lasers, Photonics, Optical Devices
Optical and Electronic Materials
Microwaves, RF and Optical Engineering
Renewable and Green Energy
ISBN 3-319-75377-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Part I: Fundamental Principles of Ellipsometry -- Measurement Technique of Ellipsometry -- Data Analysis -- Optical Properties of Semiconductors -- Dielectric Function Modeling -- Effect of Roughness on Ellipsometry Analysis -- Part II: Characterization of Materials and Structures -- Ex-situ Analysis of Multijunction Solar Cells Based on Hydrogenated Amorphous Silicon -- Crystalline Silicon Solar Cells -- Amorphous/Crystalline Si Heterojunction Solar Cells -- Optical Properties of Cu(In,Ga)Se2 -- Real Time and In-Situ Spectroscopic Ellipsometry of CuyIn1-xGaxSe2 for Complex Dielectric Function Determination and Parameterization -- Cu2ZnSn(S,Se)4 and Related Materials -- Real Time and Mapping Spectroscopic Ellipsometry for CdTe Photovoltaics -- High Efficiency III-V Solar Cells -- Organic Solar Cells -- Organic-Inorganic Hybrid Perovskite Solar Cells -- Solar Cells with Photonic and Plasmonic Structures -- Transparent Conductive Oxide Materials -- High-Mobility Transparent Conductive Oxide Layers.
Record Nr. UNINA-9910309661903321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spectroscopic Ellipsometry for Photovoltaics : Volume 2: Applications and Optical Data of Solar Cell Materials / / edited by Hiroyuki Fujiwara, Robert W. Collins
Spectroscopic Ellipsometry for Photovoltaics : Volume 2: Applications and Optical Data of Solar Cell Materials / / edited by Hiroyuki Fujiwara, Robert W. Collins
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XXI, 616 p. 330 illus., 204 illus. in color.)
Disciplina 620.11295
Collana Springer Series in Optical Sciences
Soggetto topico Lasers
Photonics
Optical materials
Electronic materials
Spectroscopy
Microscopy
Renewable energy resources
Microwaves
Optical engineering
Optics, Lasers, Photonics, Optical Devices
Optical and Electronic Materials
Spectroscopy and Microscopy
Renewable and Green Energy
Microwaves, RF and Optical Engineering
ISBN 3-319-95138-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Part I: Application of Ellipsometry Technique -- Analysis of Optical and Recombination Losses in Solar Cells -- Optical Simulation of External Quantum Efficiency Spectra -- Characterization of Textured Structures -- On-line Monitoring of Photovoltaics Production -- Real Time Measurement, Monitoring, and Control of CuIn1‑xGaxSe2 by Spectroscopic Ellipsometry -- Real Time and Mapping Spectroscopic Ellipsometry of Hydrogenated Amorphous and Nanocrystalline Si Solar Cells -- Part II: Optical Data of Solar-Cell Component Materials -- Inorganic Semiconductors and Passivation Layers -- Organic Semiconductors -- Organic-Inorganic Hybrid Perovskites -- Transparent Conductive Oxides -- Metals -- Substrates and Coating Layers.
Record Nr. UNINA-9910309661803321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui