top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Algorithmic learning theory : 19th International Conference, ALT 2008, Budapest, Hungary, October 13-16, 2008, proceedings / / Yoav Freund [and three others], (Eds.)
Algorithmic learning theory : 19th International Conference, ALT 2008, Budapest, Hungary, October 13-16, 2008, proceedings / / Yoav Freund [and three others], (Eds.)
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Berlin ; ; Heidelberg : , : Springer, , [2008]
Descrizione fisica 1 online resource (XIII, 467 p.)
Disciplina 005.1
Collana Lecture Notes in Computer Science
Soggetto topico Computer algorithms
Machine learning
ISBN 3-540-87987-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Invited Papers -- On Iterative Algorithms with an Information Geometry Background -- Visual Analytics: Combining Automated Discovery with Interactive Visualizations -- Some Mathematics behind Graph Property Testing -- Finding Total and Partial Orders from Data for Seriation -- Computational Models of Neural Representations in the Human Brain -- Regular Contributions -- Generalization Bounds for Some Ordinal Regression Algorithms -- Approximation of the Optimal ROC Curve and a Tree-Based Ranking Algorithm -- Sample Selection Bias Correction Theory -- Exploiting Cluster-Structure to Predict the Labeling of a Graph -- A Uniform Lower Error Bound for Half-Space Learning -- Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces -- Learning and Generalization with the Information Bottleneck -- Growth Optimal Investment with Transaction Costs -- Online Regret Bounds for Markov Decision Processes with Deterministic Transitions -- On-Line Probability, Complexity and Randomness -- Prequential Randomness -- Some Sufficient Conditions on an Arbitrary Class of Stochastic Processes for the Existence of a Predictor -- Nonparametric Independence Tests: Space Partitioning and Kernel Approaches -- Supermartingales in Prediction with Expert Advice -- Aggregating Algorithm for a Space of Analytic Functions -- Smooth Boosting for Margin-Based Ranking -- Learning with Continuous Experts Using Drifting Games -- Entropy Regularized LPBoost -- Optimally Learning Social Networks with Activations and Suppressions -- Active Learning in Multi-armed Bandits -- Query Learning and Certificates in Lattices -- Clustering with Interactive Feedback -- Active Learning of Group-Structured Environments -- Finding the Rare Cube -- Iterative Learning of Simple External Contextual Languages -- Topological Properties of Concept Spaces -- Dynamically Delayed Postdictive Completeness and Consistency in Learning -- Dynamic Modeling in Inductive Inference -- Optimal Language Learning -- Numberings Optimal for Learning -- Learning with Temporary Memory -- Erratum: Constructing Multiclass Learners from Binary Learners: A Simple Black-Box Analysis of the Generalization Errors.
Record Nr. UNINA-9910484043803321
Berlin ; ; Heidelberg : , : Springer, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algorithmic learning theory : 19th International Conference, ALT 2008, Budapest, Hungary, October 13-16, 2008, proceedings / / Yoav Freund [and three others], (Eds.)
Algorithmic learning theory : 19th International Conference, ALT 2008, Budapest, Hungary, October 13-16, 2008, proceedings / / Yoav Freund [and three others], (Eds.)
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Berlin ; ; Heidelberg : , : Springer, , [2008]
Descrizione fisica 1 online resource (XIII, 467 p.)
Disciplina 005.1
Collana Lecture Notes in Computer Science
Soggetto topico Computer algorithms
Machine learning
ISBN 3-540-87987-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Invited Papers -- On Iterative Algorithms with an Information Geometry Background -- Visual Analytics: Combining Automated Discovery with Interactive Visualizations -- Some Mathematics behind Graph Property Testing -- Finding Total and Partial Orders from Data for Seriation -- Computational Models of Neural Representations in the Human Brain -- Regular Contributions -- Generalization Bounds for Some Ordinal Regression Algorithms -- Approximation of the Optimal ROC Curve and a Tree-Based Ranking Algorithm -- Sample Selection Bias Correction Theory -- Exploiting Cluster-Structure to Predict the Labeling of a Graph -- A Uniform Lower Error Bound for Half-Space Learning -- Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces -- Learning and Generalization with the Information Bottleneck -- Growth Optimal Investment with Transaction Costs -- Online Regret Bounds for Markov Decision Processes with Deterministic Transitions -- On-Line Probability, Complexity and Randomness -- Prequential Randomness -- Some Sufficient Conditions on an Arbitrary Class of Stochastic Processes for the Existence of a Predictor -- Nonparametric Independence Tests: Space Partitioning and Kernel Approaches -- Supermartingales in Prediction with Expert Advice -- Aggregating Algorithm for a Space of Analytic Functions -- Smooth Boosting for Margin-Based Ranking -- Learning with Continuous Experts Using Drifting Games -- Entropy Regularized LPBoost -- Optimally Learning Social Networks with Activations and Suppressions -- Active Learning in Multi-armed Bandits -- Query Learning and Certificates in Lattices -- Clustering with Interactive Feedback -- Active Learning of Group-Structured Environments -- Finding the Rare Cube -- Iterative Learning of Simple External Contextual Languages -- Topological Properties of Concept Spaces -- Dynamically Delayed Postdictive Completeness and Consistency in Learning -- Dynamic Modeling in Inductive Inference -- Optimal Language Learning -- Numberings Optimal for Learning -- Learning with Temporary Memory -- Erratum: Constructing Multiclass Learners from Binary Learners: A Simple Black-Box Analysis of the Generalization Errors.
Record Nr. UNISA-996465373803316
Berlin ; ; Heidelberg : , : Springer, , [2008]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Boosting : foundations and algorithms / / Robert E. Schapire and Yoav Freund
Boosting : foundations and algorithms / / Robert E. Schapire and Yoav Freund
Autore Schapire Robert E.
Pubbl/distr/stampa Cambridge, Massachusetts : , : MIT Press, , c2012
Descrizione fisica 1 online resource (544 p.)
Disciplina 006.3/1
Altri autori (Persone) FreundYoav
Collana Adaptive computation and machine learning series
Soggetto topico Boosting (Algorithms)
Supervised learning (Machine learning)
Soggetto genere / forma Electronic books.
ISBN 1-280-67835-6
9786613655288
0-262-30118-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foundations of machine learning -- Using AdaBoost to minimize training error -- Direct bounds on the generalization error -- The margins explanation for boosting's effectiveness -- Game theory, online learning, and boosting -- Loss minimization and generalizations of boosting -- Boosting, convex optimization, and information geometry -- Using confidence-rated weak predictions -- Multiclass classification problems -- Learning to rank -- Attaining the best possible accuracy -- Optimally efficient boosting -- Boosting in continuous time.
Record Nr. UNINA-9910260629203321
Schapire Robert E.  
Cambridge, Massachusetts : , : MIT Press, , c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Boosting : foundations and algorithms / / Robert E. Schapire and Yoav Freund
Boosting : foundations and algorithms / / Robert E. Schapire and Yoav Freund
Autore Schapire Robert E.
Pubbl/distr/stampa Cambridge, : The MIT Press, 2012
Descrizione fisica 1 online resource (544 p.)
Disciplina 006.3/1
Altri autori (Persone) FreundYoav
Collana Adaptive computation and machine learning series
Soggetto topico Boosting (Algorithms)
Supervised learning (Machine learning)
Soggetto non controllato Artificial intelligence
Algorithms and data structures
ISBN 0-262-30039-7
1-280-67835-6
9786613655288
0-262-30118-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foundations of machine learning -- Using AdaBoost to minimize training error -- Direct bounds on the generalization error -- The margins explanation for boosting's effectiveness -- Game theory, online learning, and boosting -- Loss minimization and generalizations of boosting -- Boosting, convex optimization, and information geometry -- Using confidence-rated weak predictions -- Multiclass classification problems -- Learning to rank -- Attaining the best possible accuracy -- Optimally efficient boosting -- Boosting in continuous time.
Record Nr. UNINA-9910529509803321
Schapire Robert E.  
Cambridge, : The MIT Press, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui