Mobile positioning and tracking : from conventional to cooperative techniques / / [edited by] Simone Frattasi, Francescantonio Della Rosa
| Mobile positioning and tracking : from conventional to cooperative techniques / / [edited by] Simone Frattasi, Francescantonio Della Rosa |
| Autore | Frattasi Simone S. |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Chichester, UK ; ; Hoboken, NJ : , : John Wiley & Sons, , 2017 |
| Descrizione fisica | 1 PDF (416 pages) |
| Disciplina | 621.384 |
| Collana | Wiley - IEEE |
| Soggetto topico |
Location-based services
Wireless localization Mobile geographic information systems Electronics in navigation |
| ISBN |
1-119-06882-7
1-119-06885-1 1-119-06884-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
-- About the Authors xv -- List of Contributors xvii -- Preface xix -- Acknowledgements xxi -- List of Abbreviations xxiii -- Notations xxxi -- 1 Introduction 1 /Joaõ Figueiras, Francescantonio Della Rosa and Simone Frattasi -- 1.1 Application Areas of Positioning (Chapter 2) 5 -- 1.2 Basics of Wireless Communications for Positioning (Chapter 3) 5 -- 1.3 Fundamentals of Positioning (Chapter 4) 5 -- 1.4 Data Fusion and Filtering Techniques (Chapter 5) 6 -- 1.5 Fundamentals of Tracking (Chapter 6) 6 -- 1.6 Error Mitigation Techniques (Chapter 7) 7 -- 1.7 Positioning Systems and Technologies (Chapter 8) 7 -- 1.8 Ultrawideband Positioning and Tracking (Chapter 9) 8 -- 1.9 Indoor Positioning in WLAN (Chapter 10) 8 -- 1.10 Cooperative Multi-tag Localization in RFID Systems (Chapter 11) 9 -- 1.11 Cooperative Mobile Positioning (Chapter 12) 9 -- 2 Application Areas of Positioning 11 /Simone Frattasi -- 2.1 Introduction 11 -- 2.2 Localization Framework 11 -- 2.3 Location-based Services 13 -- 2.3.1 LBS Ecosystem 13 -- 2.3.2 Taxonomies 15 -- 2.3.3 Context Awareness 26 -- 2.3.4 Privacy 29 -- 2.4 Location-based Network Optimization 32 -- 2.4.1 Radio Network Planning 32 -- 2.4.2 Radio Resource Management 32 -- 2.5 Patent Trends 35 -- 2.6 Conclusions 39 -- 3 Basics of Wireless Communications for Positioning 43 /Gilberto Berardinelli and Nicola Marchetti -- 3.1 Introduction 43 -- 3.2 Radio Propagation 44 -- 3.2.1 Path Loss 45 -- 3.2.2 Shadowing 48 -- 3.2.3 Small-scale Fading 49 -- 3.2.4 Radio Propagation and Mobile Positioning 52 -- 3.2.5 RSS-based Positioning 54 -- 3.3 Multiple-antenna Techniques 55 -- 3.3.1 Spatial Diversity 55 -- 3.3.2 Spatial Multiplexing 56 -- 3.3.3 Gains Obtained by Exploiting the Spatial Domain 57 -- 3.3.4 MIMO and Mobile Positioning 59 -- 3.4 Duplexing Methods 59 -- 3.4.1 Simplex Systems 59 -- 3.4.2 Half-duplex 59 -- 3.4.3 Full Duplex 60 -- 3.5 Modulation and Multiple-access Techniques 61 -- 3.5.1 Modulation Techniques 61 -- 3.5.2 Multiple-access Techniques 65.
3.5.3 OFDMA and Mobile Positioning 67 -- 3.6 Radio Resource Management and Mobile Positioning 67 -- 3.6.1 Handoff, Channel Reuse and Interference Adaptation 67 -- 3.6.2 Power Control 69 -- 3.7 Synchronization 70 -- 3.7.1 Centralized Synchronization 70 -- 3.7.2 Distributed Synchronization 71 -- 3.8 Cooperative Communications 72 -- 3.8.1 Cooperative MIMO 73 -- 3.8.2 Clustering 74 -- 3.8.3 Cooperative Routing 75 -- 3.8.4 RSS-based Cooperative Positioning 75 -- 3.9 Cognitive Radio and Mobile Positioning 75 -- 3.10 Conclusions 78 -- 4 Fundamentals of Positioning 81 /João Figueiras -- 4.1 Introduction 81 -- 4.2 Classification of Positioning Infrastructures 81 -- 4.2.1 Positioning-system Topology 82 -- 4.2.2 Physical Coverage Range 83 -- 4.2.3 Integration of Positioning Solutions 84 -- 4.3 Types of Measurements and Methods for their Estimation 85 -- 4.3.1 Cell ID 85 -- 4.3.2 Signal Strength 85 -- 4.3.3 Time of Arrival 86 -- 4.3.4 Time Difference of Arrival 87 -- 4.3.5 Angle of Arrival 88 -- 4.3.6 Personal-information Identification 89 -- 4.4 Positioning Techniques 89 -- 4.4.1 Proximity Sensing 89 -- 4.4.2 Triangulation 91 -- 4.4.3 Fingerprinting 95 -- 4.4.4 Dead Reckoning 98 -- 4.4.5 Hybrid Approaches 98 -- 4.5 Error Sources in Positioning 100 -- 4.5.1 Propagation 100 -- 4.5.2 Geometry 104 -- 4.5.3 Equipment and Technology 105 -- 4.6 Metrics of Location Accuracy 106 -- 4.6.1 Circular Error Probability 106 -- 4.6.2 Dilution of Precision 106 -- 4.6.3 Cramér / Rao Lower Bound 107 -- 4.7 Conclusions 107 -- 5 Data Fusion and Filtering Techniques 109 /João Figueiras -- 5.1 Introduction 109 -- 5.2 Least-squares Methods 110 -- 5.2.1 Linear Least Squares 111 -- 5.2.2 Recursive Least Squares 112 -- 5.2.3 Weighted Nonlinear Least Squares 113 -- 5.2.4 The Absolute/Local-minimum Problem 117 -- 5.3 Bayesian Filtering 117 -- 5.3.1 The Kalman Filter 118 -- 5.3.2 The Particle Filter 124 -- 5.3.3 Grid-based Methods 126 -- 5.4 Estimating Model Parameters and Biases in Observations 126 -- 5.4.1 Precalibration 127. 5.4.2 Joint Parameter and State Estimation 127 -- 5.5 Alternative Approaches 128 -- 5.5.1 Fingerprinting 128 -- 5.5.2 Time Series Data 131 -- 5.6 Conclusions 132 -- 6 Fundamentals of Tracking 135 /João Figueiras -- 6.1 Introduction 135 -- 6.2 Impact of User Mobility on Positioning 136 -- 6.2.1 Localizing Static Devices 136 -- 6.2.2 Added Complexity in Tracking 136 -- 6.2.3 Additional Knowledge in Cooperative Environments 136 -- 6.3 Mobility Models 137 -- 6.3.1 Conventional Models 137 -- 6.3.2 Models Based on Stochastic Processes 137 -- 6.3.3 Geographical-restriction Models 144 -- 6.3.4 Group Mobility Models 146 -- 6.3.5 Social-based Models 147 -- 6.4 Tracking Moving Devices 150 -- 6.4.1 Mitigating Obstructions in the Propagation Conditions 150 -- 6.4.2 Tracking Nonmaneuvering Targets 151 -- 6.4.3 Tracking Maneuvering Targets 152 -- 6.4.4 Learning Position and Trajectory Patterns 155 -- 6.5 Conclusions 160 -- 7 Error Mitigation Techniques 163 /Ismail Guvenc -- 7.1 Introduction 163 -- 7.2 System Model 165 -- 7.2.1 Maximum-likelihood Algorithm for LOS Scenarios 166 -- 7.2.2 Cramér / Rao Lower Bounds for LOS Scenarios 167 -- 7.3 NLOS Scenarios: Fundamental Limits and Maximum-likelihood Solutions 170 -- 7.3.1 ML-based Algorithms 170 -- 7.3.2 Cramér / Rao Lower Bound 173 -- 7.4 Least-squares Techniques for NLOS Localization 175 -- 7.4.1 Weighted Least Squares 175 -- 7.4.2 Residual-weighting Algorithm 176 -- 7.5 Constraint-based Techniques for NLOS Localization 178 -- 7.5.1 Constrained LS Algorithm and Quadratic Programming 178 -- 7.5.2 Linear Programming 178 -- 7.5.3 Geometry-constrained Location Estimation 180 -- 7.5.4 Interior-point Optimization 181 -- 7.6 Robust Estimators for NLOS Localization 182 -- 7.6.1 Huber M-estimator 182 -- 7.6.2 Least Median Squares 183 -- 7.6.3 Other Robust Estimation Options 184 -- 7.7 Identify and Discard Techniques for NLOS Localization 184 -- 7.7.1 Residual Test Algorithm 184 -- 7.8 Conclusions 188 -- 8 Positioning Systems and Technologies 189 /Andreas Waadt, Guido Bruck and Peter Jung. 8.1 Introduction 189 -- 8.2 Satellite Positioning 190 -- 8.2.1 Overview 190 -- 8.2.2 Basic Principles 191 -- 8.2.3 Satellite Positioning Systems 194 -- 8.2.4 Accuracy and Reliability 195 -- 8.2.5 Drawbacks When Applied to Mobile Positioning 195 -- 8.3 Cellular Positioning 196 -- 8.3.1 Overview 196 -- 8.3.2 GSM 197 -- 8.3.3 UMTS 206 -- 8.3.4 LTE 208 -- 8.3.5 Emergency Applications in Cellular Networks 211 -- 8.3.6 Drawbacks When Applied to Mobile Positioning 213 -- 8.4 Wireless Local/Personal Area Network Positioning 213 -- 8.4.1 Solutions on Top of Wireless Local Networks 213 -- 8.4.2 Dedicated Solutions 217 -- 8.5 Ad hoc Positioning 220 -- 8.6 Hybrid Positioning 220 -- 8.6.1 Heterogeneous Positioning 220 -- 8.6.2 Cellular and WLAN 221 -- 8.6.3 Assisted GPS 221 -- 8.7 Conclusions 223 -- Acknowledgements 223 -- 9 Ultra-wideband Positioning and Tracking 225 /Davide Dardari -- 9.1 Introduction 225 -- 9.2 UWB Technology 226 -- 9.2.1 History and Definitions 226 -- 9.2.2 Theory 226 -- 9.2.3 Regulations 228 -- 9.3 The UWB Radio Channel 230 -- 9.3.1 Path Loss 231 -- 9.3.2 Multipath 231 -- 9.3.3 UWB Channel Models for Positioning 232 -- 9.4 UWB Standards 233 -- 9.4.1 IEEE 802.15.4a Standard 233 -- 9.4.2 IEEE 802.15.4f Standard 235 -- 9.4.3 Other Standards 237 -- 9.5 Time-of-arrival Measurements 237 -- 9.5.1 Two-way Ranging 237 -- 9.5.2 Time Difference of Arrival 238 -- 9.5.3 Fundamental Limits in TOA Estimation 238 -- 9.5.4 Main Issues in TOA Estimation 240 -- 9.5.5 Clock Drift 242 -- 9.6 Ranging Algoritms in Real Conditions 243 -- 9.6.1 ML TOA Estimation in the Presence of a Multipath 243 -- 9.6.2 Clock Drift Mitigation 248 -- 9.6.3 Localization and Tracking with UWB 250 -- 9.7 Passive UWB Localization 253 -- 9.7.1 UWB-RFID 253 -- 9.8 Conclusions and Perspectives 258 -- Acknowledgments 260 -- 10 Indoor Positioning in WLAN 261 /Francescantonio Della Rosa, Mauro Pelosi and Jari Nurmi -- 10.1 Introduction 261 -- 10.2 Potential and Limitations of WLAN 262 -- 10.3 Empirical Approaches 263. 10.3.1 Probe Requests and Beacon Frames 264 -- 10.3.2 Positioning Methods 265 -- 10.3.3 Evaluation Criteria for Indoor Positioning Systems Based on WLANs 272 -- 10.4 Error Sources in RSS Measurements 274 -- 10.4.1 Heterogeneous WiFi Cards 275 -- 10.4.2 Device Orientation 277 -- 10.4.3 Channel in the Presence of the User and Body Loss 278 -- 10.4.4 The Hand Grip 278 -- 10.5 Experimental Activities 279 -- 10.6 Conclusions 281 -- 11 Cooperative Multi-tag Localization in RFID Systems: Exploiting Multiplicity, Diversity and Polarization of Tags 283 /Tanveer Bhuiyan and Simone Frattasi -- 11.1 Introduction 283 -- 11.2 RFID Positioning Systems 285 -- 11.2.1 Single-tag Localization 285 -- 11.3 Cooperative Multi-tag Localization 286 -- 11.3.1 Multi-tagged Objects and Persons 286 -- 11.3.2 Localization of Mobile RFID Readers: CoopAOA 290 -- 11.3.3 Performance Evaluation 297 -- 11.3.4 Experimental Activity for Tag Localization 309 -- 11.4 Conclusions 314 -- 12 Cooperative Mobile Positioning 315 /Simone Frattasi, Joaõ Figueiras and Francescantonio Della Rosa -- 12.1 Introduction 315 -- 12.2 Cooperative Localization 316 -- 12.2.1 Robot Networks 316 -- 12.2.2 Wireless Sensor Networks 317 -- 12.2.3 Wireless Mobile Networks 321 -- 12.3 Cooperative Data Fusion and Filtering Techniques 323 -- 12.3.1 Coop-WNLLS: Cooperative Weighted Nonlinear Least Squares 323 -- 12.3.2 Coop-EKF: Cooperative Extended Kalman Filter 326 -- 12.4 COMET: A Cooperative Mobile Positioning System 328 -- 12.4.1 System Architecture 328 -- 12.4.2 Data Fusion Methods 330 -- 12.4.3 Performance Evaluation 337 -- 12.5 Experimental Activity in a Cooperative WLAN Scenario 349 -- 12.5.1 Scenario 350 -- 12.5.2 Results 350 -- 12.6 Conclusions 352 -- References 353 -- Index 373. |
| Record Nr. | UNINA-9910270882203321 |
Frattasi Simone S.
|
||
| Chichester, UK ; ; Hoboken, NJ : , : John Wiley & Sons, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mobile positioning and tracking : from conventional to cooperative techniques / / [edited by] Simone Frattasi, Francescantonio Della Rosa
| Mobile positioning and tracking : from conventional to cooperative techniques / / [edited by] Simone Frattasi, Francescantonio Della Rosa |
| Autore | Frattasi Simone S. |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Chichester, UK ; ; Hoboken, NJ : , : John Wiley & Sons, , 2017 |
| Descrizione fisica | 1 PDF (416 pages) |
| Disciplina | 621.384 |
| Collana | Wiley - IEEE |
| Soggetto topico |
Location-based services
Wireless localization Mobile geographic information systems Electronics in navigation |
| ISBN |
1-119-06882-7
1-119-06885-1 1-119-06884-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
-- About the Authors xv -- List of Contributors xvii -- Preface xix -- Acknowledgements xxi -- List of Abbreviations xxiii -- Notations xxxi -- 1 Introduction 1 /Joaõ Figueiras, Francescantonio Della Rosa and Simone Frattasi -- 1.1 Application Areas of Positioning (Chapter 2) 5 -- 1.2 Basics of Wireless Communications for Positioning (Chapter 3) 5 -- 1.3 Fundamentals of Positioning (Chapter 4) 5 -- 1.4 Data Fusion and Filtering Techniques (Chapter 5) 6 -- 1.5 Fundamentals of Tracking (Chapter 6) 6 -- 1.6 Error Mitigation Techniques (Chapter 7) 7 -- 1.7 Positioning Systems and Technologies (Chapter 8) 7 -- 1.8 Ultrawideband Positioning and Tracking (Chapter 9) 8 -- 1.9 Indoor Positioning in WLAN (Chapter 10) 8 -- 1.10 Cooperative Multi-tag Localization in RFID Systems (Chapter 11) 9 -- 1.11 Cooperative Mobile Positioning (Chapter 12) 9 -- 2 Application Areas of Positioning 11 /Simone Frattasi -- 2.1 Introduction 11 -- 2.2 Localization Framework 11 -- 2.3 Location-based Services 13 -- 2.3.1 LBS Ecosystem 13 -- 2.3.2 Taxonomies 15 -- 2.3.3 Context Awareness 26 -- 2.3.4 Privacy 29 -- 2.4 Location-based Network Optimization 32 -- 2.4.1 Radio Network Planning 32 -- 2.4.2 Radio Resource Management 32 -- 2.5 Patent Trends 35 -- 2.6 Conclusions 39 -- 3 Basics of Wireless Communications for Positioning 43 /Gilberto Berardinelli and Nicola Marchetti -- 3.1 Introduction 43 -- 3.2 Radio Propagation 44 -- 3.2.1 Path Loss 45 -- 3.2.2 Shadowing 48 -- 3.2.3 Small-scale Fading 49 -- 3.2.4 Radio Propagation and Mobile Positioning 52 -- 3.2.5 RSS-based Positioning 54 -- 3.3 Multiple-antenna Techniques 55 -- 3.3.1 Spatial Diversity 55 -- 3.3.2 Spatial Multiplexing 56 -- 3.3.3 Gains Obtained by Exploiting the Spatial Domain 57 -- 3.3.4 MIMO and Mobile Positioning 59 -- 3.4 Duplexing Methods 59 -- 3.4.1 Simplex Systems 59 -- 3.4.2 Half-duplex 59 -- 3.4.3 Full Duplex 60 -- 3.5 Modulation and Multiple-access Techniques 61 -- 3.5.1 Modulation Techniques 61 -- 3.5.2 Multiple-access Techniques 65.
3.5.3 OFDMA and Mobile Positioning 67 -- 3.6 Radio Resource Management and Mobile Positioning 67 -- 3.6.1 Handoff, Channel Reuse and Interference Adaptation 67 -- 3.6.2 Power Control 69 -- 3.7 Synchronization 70 -- 3.7.1 Centralized Synchronization 70 -- 3.7.2 Distributed Synchronization 71 -- 3.8 Cooperative Communications 72 -- 3.8.1 Cooperative MIMO 73 -- 3.8.2 Clustering 74 -- 3.8.3 Cooperative Routing 75 -- 3.8.4 RSS-based Cooperative Positioning 75 -- 3.9 Cognitive Radio and Mobile Positioning 75 -- 3.10 Conclusions 78 -- 4 Fundamentals of Positioning 81 /João Figueiras -- 4.1 Introduction 81 -- 4.2 Classification of Positioning Infrastructures 81 -- 4.2.1 Positioning-system Topology 82 -- 4.2.2 Physical Coverage Range 83 -- 4.2.3 Integration of Positioning Solutions 84 -- 4.3 Types of Measurements and Methods for their Estimation 85 -- 4.3.1 Cell ID 85 -- 4.3.2 Signal Strength 85 -- 4.3.3 Time of Arrival 86 -- 4.3.4 Time Difference of Arrival 87 -- 4.3.5 Angle of Arrival 88 -- 4.3.6 Personal-information Identification 89 -- 4.4 Positioning Techniques 89 -- 4.4.1 Proximity Sensing 89 -- 4.4.2 Triangulation 91 -- 4.4.3 Fingerprinting 95 -- 4.4.4 Dead Reckoning 98 -- 4.4.5 Hybrid Approaches 98 -- 4.5 Error Sources in Positioning 100 -- 4.5.1 Propagation 100 -- 4.5.2 Geometry 104 -- 4.5.3 Equipment and Technology 105 -- 4.6 Metrics of Location Accuracy 106 -- 4.6.1 Circular Error Probability 106 -- 4.6.2 Dilution of Precision 106 -- 4.6.3 Cramér / Rao Lower Bound 107 -- 4.7 Conclusions 107 -- 5 Data Fusion and Filtering Techniques 109 /João Figueiras -- 5.1 Introduction 109 -- 5.2 Least-squares Methods 110 -- 5.2.1 Linear Least Squares 111 -- 5.2.2 Recursive Least Squares 112 -- 5.2.3 Weighted Nonlinear Least Squares 113 -- 5.2.4 The Absolute/Local-minimum Problem 117 -- 5.3 Bayesian Filtering 117 -- 5.3.1 The Kalman Filter 118 -- 5.3.2 The Particle Filter 124 -- 5.3.3 Grid-based Methods 126 -- 5.4 Estimating Model Parameters and Biases in Observations 126 -- 5.4.1 Precalibration 127. 5.4.2 Joint Parameter and State Estimation 127 -- 5.5 Alternative Approaches 128 -- 5.5.1 Fingerprinting 128 -- 5.5.2 Time Series Data 131 -- 5.6 Conclusions 132 -- 6 Fundamentals of Tracking 135 /João Figueiras -- 6.1 Introduction 135 -- 6.2 Impact of User Mobility on Positioning 136 -- 6.2.1 Localizing Static Devices 136 -- 6.2.2 Added Complexity in Tracking 136 -- 6.2.3 Additional Knowledge in Cooperative Environments 136 -- 6.3 Mobility Models 137 -- 6.3.1 Conventional Models 137 -- 6.3.2 Models Based on Stochastic Processes 137 -- 6.3.3 Geographical-restriction Models 144 -- 6.3.4 Group Mobility Models 146 -- 6.3.5 Social-based Models 147 -- 6.4 Tracking Moving Devices 150 -- 6.4.1 Mitigating Obstructions in the Propagation Conditions 150 -- 6.4.2 Tracking Nonmaneuvering Targets 151 -- 6.4.3 Tracking Maneuvering Targets 152 -- 6.4.4 Learning Position and Trajectory Patterns 155 -- 6.5 Conclusions 160 -- 7 Error Mitigation Techniques 163 /Ismail Guvenc -- 7.1 Introduction 163 -- 7.2 System Model 165 -- 7.2.1 Maximum-likelihood Algorithm for LOS Scenarios 166 -- 7.2.2 Cramér / Rao Lower Bounds for LOS Scenarios 167 -- 7.3 NLOS Scenarios: Fundamental Limits and Maximum-likelihood Solutions 170 -- 7.3.1 ML-based Algorithms 170 -- 7.3.2 Cramér / Rao Lower Bound 173 -- 7.4 Least-squares Techniques for NLOS Localization 175 -- 7.4.1 Weighted Least Squares 175 -- 7.4.2 Residual-weighting Algorithm 176 -- 7.5 Constraint-based Techniques for NLOS Localization 178 -- 7.5.1 Constrained LS Algorithm and Quadratic Programming 178 -- 7.5.2 Linear Programming 178 -- 7.5.3 Geometry-constrained Location Estimation 180 -- 7.5.4 Interior-point Optimization 181 -- 7.6 Robust Estimators for NLOS Localization 182 -- 7.6.1 Huber M-estimator 182 -- 7.6.2 Least Median Squares 183 -- 7.6.3 Other Robust Estimation Options 184 -- 7.7 Identify and Discard Techniques for NLOS Localization 184 -- 7.7.1 Residual Test Algorithm 184 -- 7.8 Conclusions 188 -- 8 Positioning Systems and Technologies 189 /Andreas Waadt, Guido Bruck and Peter Jung. 8.1 Introduction 189 -- 8.2 Satellite Positioning 190 -- 8.2.1 Overview 190 -- 8.2.2 Basic Principles 191 -- 8.2.3 Satellite Positioning Systems 194 -- 8.2.4 Accuracy and Reliability 195 -- 8.2.5 Drawbacks When Applied to Mobile Positioning 195 -- 8.3 Cellular Positioning 196 -- 8.3.1 Overview 196 -- 8.3.2 GSM 197 -- 8.3.3 UMTS 206 -- 8.3.4 LTE 208 -- 8.3.5 Emergency Applications in Cellular Networks 211 -- 8.3.6 Drawbacks When Applied to Mobile Positioning 213 -- 8.4 Wireless Local/Personal Area Network Positioning 213 -- 8.4.1 Solutions on Top of Wireless Local Networks 213 -- 8.4.2 Dedicated Solutions 217 -- 8.5 Ad hoc Positioning 220 -- 8.6 Hybrid Positioning 220 -- 8.6.1 Heterogeneous Positioning 220 -- 8.6.2 Cellular and WLAN 221 -- 8.6.3 Assisted GPS 221 -- 8.7 Conclusions 223 -- Acknowledgements 223 -- 9 Ultra-wideband Positioning and Tracking 225 /Davide Dardari -- 9.1 Introduction 225 -- 9.2 UWB Technology 226 -- 9.2.1 History and Definitions 226 -- 9.2.2 Theory 226 -- 9.2.3 Regulations 228 -- 9.3 The UWB Radio Channel 230 -- 9.3.1 Path Loss 231 -- 9.3.2 Multipath 231 -- 9.3.3 UWB Channel Models for Positioning 232 -- 9.4 UWB Standards 233 -- 9.4.1 IEEE 802.15.4a Standard 233 -- 9.4.2 IEEE 802.15.4f Standard 235 -- 9.4.3 Other Standards 237 -- 9.5 Time-of-arrival Measurements 237 -- 9.5.1 Two-way Ranging 237 -- 9.5.2 Time Difference of Arrival 238 -- 9.5.3 Fundamental Limits in TOA Estimation 238 -- 9.5.4 Main Issues in TOA Estimation 240 -- 9.5.5 Clock Drift 242 -- 9.6 Ranging Algoritms in Real Conditions 243 -- 9.6.1 ML TOA Estimation in the Presence of a Multipath 243 -- 9.6.2 Clock Drift Mitigation 248 -- 9.6.3 Localization and Tracking with UWB 250 -- 9.7 Passive UWB Localization 253 -- 9.7.1 UWB-RFID 253 -- 9.8 Conclusions and Perspectives 258 -- Acknowledgments 260 -- 10 Indoor Positioning in WLAN 261 /Francescantonio Della Rosa, Mauro Pelosi and Jari Nurmi -- 10.1 Introduction 261 -- 10.2 Potential and Limitations of WLAN 262 -- 10.3 Empirical Approaches 263. 10.3.1 Probe Requests and Beacon Frames 264 -- 10.3.2 Positioning Methods 265 -- 10.3.3 Evaluation Criteria for Indoor Positioning Systems Based on WLANs 272 -- 10.4 Error Sources in RSS Measurements 274 -- 10.4.1 Heterogeneous WiFi Cards 275 -- 10.4.2 Device Orientation 277 -- 10.4.3 Channel in the Presence of the User and Body Loss 278 -- 10.4.4 The Hand Grip 278 -- 10.5 Experimental Activities 279 -- 10.6 Conclusions 281 -- 11 Cooperative Multi-tag Localization in RFID Systems: Exploiting Multiplicity, Diversity and Polarization of Tags 283 /Tanveer Bhuiyan and Simone Frattasi -- 11.1 Introduction 283 -- 11.2 RFID Positioning Systems 285 -- 11.2.1 Single-tag Localization 285 -- 11.3 Cooperative Multi-tag Localization 286 -- 11.3.1 Multi-tagged Objects and Persons 286 -- 11.3.2 Localization of Mobile RFID Readers: CoopAOA 290 -- 11.3.3 Performance Evaluation 297 -- 11.3.4 Experimental Activity for Tag Localization 309 -- 11.4 Conclusions 314 -- 12 Cooperative Mobile Positioning 315 /Simone Frattasi, Joaõ Figueiras and Francescantonio Della Rosa -- 12.1 Introduction 315 -- 12.2 Cooperative Localization 316 -- 12.2.1 Robot Networks 316 -- 12.2.2 Wireless Sensor Networks 317 -- 12.2.3 Wireless Mobile Networks 321 -- 12.3 Cooperative Data Fusion and Filtering Techniques 323 -- 12.3.1 Coop-WNLLS: Cooperative Weighted Nonlinear Least Squares 323 -- 12.3.2 Coop-EKF: Cooperative Extended Kalman Filter 326 -- 12.4 COMET: A Cooperative Mobile Positioning System 328 -- 12.4.1 System Architecture 328 -- 12.4.2 Data Fusion Methods 330 -- 12.4.3 Performance Evaluation 337 -- 12.5 Experimental Activity in a Cooperative WLAN Scenario 349 -- 12.5.1 Scenario 350 -- 12.5.2 Results 350 -- 12.6 Conclusions 352 -- References 353 -- Index 373. |
| Record Nr. | UNINA-9910677406103321 |
Frattasi Simone S.
|
||
| Chichester, UK ; ; Hoboken, NJ : , : John Wiley & Sons, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||