AI Solutions for the United Nations Sustainable Development Goals (UN SDGs) : A Practical Approach Using JavaScript / / by Tulsi Pawan Fowdur, Lavesh Babooram
| AI Solutions for the United Nations Sustainable Development Goals (UN SDGs) : A Practical Approach Using JavaScript / / by Tulsi Pawan Fowdur, Lavesh Babooram |
| Autore | Fowdur Tulsi Pawan |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Berkeley, CA : , : Apress : , : Imprint : Apress, , 2024 |
| Descrizione fisica | 1 online resource (355 pages) |
| Disciplina | 006.3 |
| Altri autori (Persone) |
BabooramLavesh
LaliteshDobee AshvenSanghan GyaneetaLuchmunparsad AdnaanKurmally Mohammad AvishayeDomah DheerajRadjoo VandanaHanumunthadu MaadhaveeMohadeb Sai |
| Soggetto topico |
Artificial intelligence
Java (Computer program language) Programming languages (Electronic computers) Artificial Intelligence Java Programming Language |
| ISBN | 9798868805363 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1: Introduction to Machine Learning Applications Development and the UN SDGs -- Chapter 2: Utilizing Machine Learning Algorithms for Power generation prediction and classification in Wind Farms -- Chapter 3: Crop Recommendation System Using Machine Learning Algorithms for achieving SDGs 2, 9, and 12 -- Chapter 4: Aligning Manufacturing Emissions with SDGs 9 and 13 Using Machine Learning Algorithms -- Chapter 5: Water Potability Testing Using Machine Learning -- Applying Machine Learning for Air Quality Monitoring Targeting SDG 3 and 13 -- Chapter 7: Clustering the Development of Worldwide Internet Connectivity with Unsupervised Learning for SDGs 7, 9, and 11. |
| Record Nr. | UNINA-9910917787303321 |
Fowdur Tulsi Pawan
|
||
| Berkeley, CA : , : Apress : , : Imprint : Apress, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Machine Learning For Network Traffic and Video Quality Analysis : Develop and Deploy Applications Using JavaScript and Node.js / / by Tulsi Pawan Fowdur, Lavesh Babooram
| Machine Learning For Network Traffic and Video Quality Analysis : Develop and Deploy Applications Using JavaScript and Node.js / / by Tulsi Pawan Fowdur, Lavesh Babooram |
| Autore | Fowdur Tulsi Pawan |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Berkeley, CA : , : Apress : , : Imprint : Apress, , 2024 |
| Descrizione fisica | 1 online resource (475 pages) |
| Disciplina | 006.31 |
| Altri autori (Persone) | BabooramLavesh |
| Soggetto topico |
Machine learning
Artificial intelligence Programming languages (Electronic computers) Machine Learning Artificial Intelligence Programming Language |
| ISBN |
9798868803543
9798868803536 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1: Introduction to NTMA and VQA -- Chapter 2: Network Traffic Monitoring and Analysis -- Chapter 3: Video Quality Assessment -- Chapter 4: Machine Learning Techniques for NTMA and VQA -- Chapter 5: NTMA Application with JavaScript -- Chapter 6: Video Quality Assessment Application Development with JavaScript -- Chapter 7: NTMA and VQA Integration. |
| Record Nr. | UNINA-9910866580003321 |
Fowdur Tulsi Pawan
|
||
| Berkeley, CA : , : Apress : , : Imprint : Apress, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Real-Time Cloud Computing and Machine Learning Applications
| Real-Time Cloud Computing and Machine Learning Applications |
| Autore | Fowdur Tulsi Pawan |
| Pubbl/distr/stampa | New York : , : Nova Science Publishers, Incorporated, , 2021 |
| Descrizione fisica | 1 online resource (810 pages) |
| Collana | Computer Science, Technology and Applications |
| Soggetto non controllato |
Expert Systems (Computer Science)
Computers |
| ISBN | 1-5361-9813-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Contents -- Preface -- Chapter 1 -- Introduction -- 1.1. Overview of Cloud Computing, Its Benefits and Applications -- 1.1.1. Benefits of Cloud Computing -- 1.1.2. Applications of Cloud Computing -- 1.1.2.1. Cloud Application Development -- 1.1.2.2. Cloud as an Enabler for Industry 4.0 -- 1.1.2.3. Cloud Radio Access Networks (C-RAN) -- 1.1.2.4. Big Data Analytics -- Cloud Private Branch Exchange (PBX) -- 1.2. Overview of Machine Learning and AI -- 1.2.1. Benefits of Machine Learning and AI -- 1.2.2. Applications of Machine Learning and AI -- 1.3. Combining AI with Cloud Computing for Real-Time Applications -- 1.4. Book Overview -- References -- Chapter 2 -- Cloud Computing Fundamentals -- 2.1. Definitions of Cloud Computing -- 2.2. Computing Paradigms -- 2.3. Cloud Computing Architecture and Enabling Technologies -- 2.4. Cloud Computing Deployment Models and Service Classes -- 2.4.1. Deployment Models -- 2.4.2. Service Classes -- 2.5. Introduction to the Firebase Cloud Platform -- 2.5.1. Firebase Cloud Database Configurations -- 2.5.2. Creating a Firebase Project and Real-time Database -- 2.5.3. Sending and Reading Data from the Database with an Android Application -- 2.6. Application Hosting on Firebase Using Node.js -- 2.6.1. Node.js Overview and Installation -- 2.6.2. Hosting a Web Application Using Node.js on Firebase for Reading and Writing Data to the Firebase Real-Time Database -- 2.7. Introduction to IBM Cloud Platform -- 2.7.1. IBM Cloud Database Configurations -- 2.7.2. Desktop Application to Send and Receive Data to the IBM Cloudant Database -- 2.7.3. Mobile Application to Send and Receive Data to the IBM Cloudant Database -- 2.8. Application Hosting on IBM Bluemix via the Eclipse IDE -- 2.8.1. Creating a Desktop Application to Send a Request to the CalculateArea servlet.
2.8.2. Creating a Mobile Application to Send a Request to the CalculateArea Servlet -- References -- Chapter 3 -- Machine Learning Algorithms -- 3.1. Definition of AI, Machine Learning and Deep Learning -- 3.1.1. Artificial Narrow Intelligence (ANI) -- 3.1.2. Artificial General Intelligence (AGI) -- 3.1.3. Artificial Super Intelligence (ASI) -- 3.2. Overview of Machine Learning Algorithms -- 3.3. Unsupervised Learning Algorithms -- 3.3.1. Unsupervised Shallow Learning Models -- 3.3.1.1. K-Means Clustering -- 3.3.1.2. Hierarchical Clustering -- 3.3.1.3. Gaussian Mixture Models -- 3.3.2. Unsupervised Deep Learning Models -- 3.3.2.1. Restricted Boltzmann Machine (RBM) -- 3.4. Supervised Learning Algorithms -- 3.4.1. Supervised Shallow Learning Models -- 3.4.1.1. Simple Linear Regression -- 3.4.1.2. Multiple Linear Regression -- 3.4.1.3. Polynomial Regression -- 3.4.1.4. Naïve Bayes -- 3.4.1.5. K-Nearest Neighbour -- 3.4.2. Supervised Deep Learning Models -- 3.4.2.1. Multi-Layered Perceptrons -- 3.4.2.2. Convolutional Neural Network -- 3.5. Reinforcement Learning Algorithms -- 3.5.1. Q-Learning -- 3.5.2. SARSA -- 3.6. Ensemble Learning Algorithms -- 3.6.1. Random Forest -- 3.7. Deploying Javascript Machine Learning Algorithms on Firebase -- 3.7.1. Main Layout of the Application -- 3.7.2. Incorporating the KNN Flower Classification Link -- 3.7.3. Incorporating the Regression Algorithm Link -- 3.7.4. Incorporating the Clustering Algorithm Link -- References -- Chapter 4 -- Data Capture and Client Architecture for a Cloud-Based Real-Time Network Analytics System -- 4.1. Overview of Machine Learning Algorithms for Network Analytics -- 4.1.1. Classification of Network Data -- 4.1.2. Regression Analysis for Network Data -- 4.2. Complete System Model of the Network Analytics System -- 4.3. Mobile Application for Network Data Capture and Analytics. 4.3.1. Creating the Android project -- 4.3.2. Adding Libraries -- 4.3.3. Android Application Layout -- 4.3.3.1. Visual Outlook on Final Application -- 4.3.3.2. Building the Visuals of activity_main.xml -- 4.3.3.3. Building the Visuals of Prediction.xml -- 4.3.3.4. Building the Visuals for csvdownload.xml -- 4.3.4. Declaring Global Variables in Main Activity -- 4.3.5. Retrieving the Last Index from the Cloud -- 4.3.6. Traffic Monitoring in the onCreate() Method -- 4.3.6.1. Initialising Components -- 4.3.6.2. Getting Initial Readings -- 4.3.6.3. Monitor Button -- 4.3.6.4. Stop Button -- 4.3.6.5. Go to Analysis Button -- 4.3.6.6. Go to Download Button -- 4.3.7. Getting Network Parameters -- 4.3.7.1. Getting Speed Data -- 4.3.7.2. Getting Packet Data -- 4.3.7.3. Getting Wi-Fi Data -- 4.3.8. Building the Main Thread -- 4.3.8.1. Creating a Thread with Runnable Class -- 4.3.8.2. Fetching Network Data -- 4.3.8.3. Updating UI and Live Monitor -- 4.3.8.4. Pushing Values to the Local Server -- 4.3.8.5. Pushing Values Directly to the Cloud -- 4.3.9. Live Graph Plotting -- 4.3.9.1. Initialising the Chart -- 4.3.9.2. Creating and Populating the Spinner -- 4.3.9.3. Applying the Adapter to the Spinner -- 4.3.9.4. Getting Spinner Value as a String -- 4.3.9.5. Programmatically Adding Data onto the Live Graph -- 4.3.10. Performing Analytics Using Cloud Servlet or Local Server -- 4.3.10.1. The "Predict" Button -- 4.3.10.2. The "Classify" Button -- 4.3.11. Downloading to .csv Files -- 4.3.11.1. Declaring Global Variables -- 4.3.11.2. Initialising Components in onCreate() -- 4.3.11.3. Browse Button -- 4.3.11.4. Download Last N Samples Button -- 4.3.11.5. Download by a Specific Date -- 4.3.11.6. Issuing the Directory Picker -- 4.3.11.7. Verifying Read and Write Permissions -- 4.3.11.8. Handling Permissions Request -- 4.3.11.9. Fetching Values from Cloudant Database. 4.3.12. Setting Permissions in Manifest -- 4.3.13. Testing the Mobile application -- 4.3.13.1. Live Monitor -- 4.3.13.2. Downloading Functionalities -- 4.3.13.3. Performing Analytics -- 4.4. Desktop Application for Network Data Capture and Analytics -- 4.4.1. Creating the NetBeans project -- 4.4.2. Desktop Application Layout -- 4.4.2.1. Visual Outlook on Final Application -- 4.4.2.2. Adding a JFrame Form to the Project -- 4.4.2.3. Adding Components to JFrame -- 4.4.3. Renaming Components -- 4.4.4. Adding Libraries -- 4.4.5. Declaring Global Variables in Netmonitor.Java -- 4.4.6. Creating Live Monitor Layout -- 4.4.7. Retrieving the Last Index from the Cloud -- 4.4.8. Start Button -- 4.4.8.1. Retrieving the Number of Items -- 4.4.8.2. Finding Network Interface in Use -- 4.4.8.3. Getting Initial Parameters -- 4.4.8.4. Updating GUI and Live Monitor -- 4.8.4.5. Pushing Values to the Local Server -- 4.8.4.6. Pushing Values to the Cloud -- 4.4.9. Stop Button -- 4.4.10. Clearing Graph -- 4.4.11. Performing Analytics Using Servlet or Local Server -- 4.4.11.1. Predict Button -- 4.4.11.2. Classify Button -- 4.4.12. Downloading to .csv Files -- 4.4.12.1. Browse Button -- 4.4.12.2. Download Last N Samples Button -- 4.4.12.3. Download by Specific Date Button -- 4.4.12.4. Fetching Values from Cloudant Database -- 4.4.13. Testing the Desktop Application -- 4.4.13.1. Live Monitor -- 4.4.13.2. Downloading Functionalities -- 4.4.13.3. Performing Analytics -- 4.5. Cloud Database Configurations for Network Analytics -- 4.5.1. Creating a Cloudant Database to Store Network Data -- 4.5.2. Adding an Index to the Database -- References -- Chapter 5 -- Server and Servlet Architectures for a Cloud-Based Real-Time Network Analytics System -- 5.1. Local Server Implementation for Network Data Capture and Forecasting -- 5.1.1. Creating the NetBeans Project. 5.1.2. Local Server Layout -- 5.1.2.1. Visual Outlook on Final Application -- 5.1.2.2. Adding Components to JFrame -- 5.1.3. Renaming Components -- 5.1.4. Adding Libraries -- 5.1.5. Declaring Global Variables in LocServer.java -- 5.1.6. Creating Live Monitor Layout -- 5.1.7. Retrieving the Last Index from the Cloud -- 5.1.8. Local Monitoring Server Implementation -- 5.1.8.1. Calling getNumberOfItems -- 5.1.8.2. Server Thread for Android Values -- 5.1.8.3. Server Thread for PC Values -- 5.1.8.4. Stopping the Server -- 5.1.8.5. Uploading Android Values to the Cloud -- 5.1.9. Filling Localhost Databases -- 5.1.10. Analytics -- 5.1.11. Classification -- 5.1.11.1. Filling Cloudant Databases -- 5.1.11.2. Retrieving Pre-Labelled Values from Cloudant Database or Localhost -- 5.1.11.3. Classifying Network Parameters Using K-Nearest Neighbour (KNN) -- 5.1.11.4. Performing K-Nearest Neighbour (KNN) -- 5.1.11.5. Classifying Network Parameters Using Multilayer Perceptron (MLP) -- 5.1.11.6. Performing Multilayer Perceptron (MLP) Classification -- 5.1.12. Regression -- 5.1.12.1. Using the Sliding Window Method -- 5.1.12.2. Filling Cloudant Databases -- 5.1.12.3. Retrieving Streaming Values from Cloudant Database -- 5.1.12.4. Multiple Linear Regression Models for Network data -- 5.1.12.5. Performing Multiple Linear Regression (MLR) -- 5.1.12.6. Multilayer Perceptron Models for Network data -- 5.1.12.7. Performing Multilayer Perceptron (MLP) Regression -- 5.1.13. Downloading to .csv Files -- 5.1.13.1. Browse Button -- 5.1.13.2. Download the Last N Samples Button -- 5.1.13.2. Download by Specific Date Button -- 5.1.14. Local Download and Analytics -- 5.1.15. Making the GUI User-Friendly -- 5.2. Testing the Local Server -- 5.2.1. Local Live Monitoring -- 5.2.2. Downloading Functionalities -- 5.2.3. Performing Analytics. 5.3. Servlet Program for Network Analytics, Monitoring and Data Retrieval. |
| Record Nr. | UNINA-9911009290703321 |
Fowdur Tulsi Pawan
|
||
| New York : , : Nova Science Publishers, Incorporated, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||