top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Application of nanotechnology in mining processes : beneficiation and sustainability / / edited by Elvis Fosso-Kankeu, Martin Mkandawire, Bhekie B. Mamba
Application of nanotechnology in mining processes : beneficiation and sustainability / / edited by Elvis Fosso-Kankeu, Martin Mkandawire, Bhekie B. Mamba
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , 2022
Descrizione fisica 1 online resource (379 pages)
Disciplina 553
Soggetto topico Mines and mineral resources - Technological innovations
ISBN 1-119-86534-4
1-119-86536-0
1-119-86535-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910677654103321
Hoboken, NJ : , : John Wiley & Sons, Inc., , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Atmospheric water harvesting development and challenges / / Elvis Fosso-Kankeu [and three others] editors
Atmospheric water harvesting development and challenges / / Elvis Fosso-Kankeu [and three others] editors
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (218 pages)
Disciplina 628.142
Collana Water science and technology library
Soggetto topico Water harvesting
Water vapor, Atmospheric
ISBN 3-031-21746-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Atmospheric Water Generator Technologies -- Outdoor testing of double slope condensation surface for extraction of water from air -- New materials for sorption-based atmospheric water harvesting:opportunities and challenges -- Metal-oxide frameworks for Atmospheric Water Harvesting -- Solar adsorption-based atmospheric water harvesting systems: Materials and technologies.
Record Nr. UNINA-9910682587403321
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hybridized technologies for the treatment of mining effluents / / edited by Elvis Fosso-Kankeu and Bhekie B. Mamba
Hybridized technologies for the treatment of mining effluents / / edited by Elvis Fosso-Kankeu and Bhekie B. Mamba
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (312 pages)
Disciplina 338.23
Soggetto topico Mineral industries - Waste disposal
Soggetto non controllato Microbiology
Mineralogy
Chemistry, Organic
Science
ISBN 1-119-89692-4
1-119-89691-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Passive Remediation of Acid Mine Drainage Using Phytoremediation: Role of Substrate, Plants, and External Factors in Inorganic Contaminants Removal -- 1.1 Introduction -- 1.2 Materials and Methods -- 1.2.1 Samples Collection and Characterization -- 1.2.2 Acquisition of the Plants and Reagents -- 1.2.3 Characterization of Samples -- 1.2.4 Quality Assurance and Quality Control (QA/QC) -- 1.2.5 Wetlands Design and Optimization Experiments -- 1.2.5.1 Wetland Design -- 1.2.5.2 Wetland Experimental Procedure and Assays -- 1.2.5.3 The Performance of the System -- 1.2.5.4 Determination of the Translocation and Distribution of Metals -- 1.2.5.5 Geochemical Modeling -- 1.3 Results and Discussion -- 1.3.1 Remediation Studies -- 1.3.1.1 Effect of FWS-CW on pH -- 1.3.1.2 Effect of FWS-CW on Electrical Conductivity -- 1.3.1.3 Effect of FWS-CW on Sulphate Concentration -- 1.3.1.4 Effect of FWS-CW on Metal Concentration -- 1.3.1.5 Role of Substrate in Metals Accumulation -- 1.3.1.6 Removal Efficiency of Metals and Sulphate in the Experimental System -- 1.3.2 Tolerance Index, Bioaccumulation, and Translocation Effects -- 1.3.2.1 Tolerance Index -- 1.3.2.2 Bioconcentration Factor -- 1.3.2.3 Translocation Factor -- 1.3.2.4 Metal Translocation and Distribution -- 1.3.3 Metals Concentration in Substrate and Vetiveria zizanioides Before and After Contact With AMD -- 1.3.4 Partitioning of Metals Between Substrate, Plants, and External Factors -- 1.3.5 Characterization of Solid Samples -- 1.3.5.1 Elemental Composition of the Substrate -- 1.3.5.2 Mineralogical Composition of the Substrate -- 1.3.5.3 Analysis of Vetiveria zizanioides Roots for Functional Group -- 1.3.5.4 Scanning Electron Microscope-Electron Dispersion Spectrometry of Vetiveria zizanioides Roots.
1.4 Chemical Species for Untreated and AMD-Treated Wetland With FWS-CW -- 1.5 Limitation of the Study -- 1.6 Conclusions and Recommendations -- References -- Chapter 2 Recovery of Strategically Important Heavy Metals from Mining Influenced Water: An Experimental Approach Based on Ion-Exchange -- Abbreviations -- 2.1 Introduction -- 2.2 Ion Exchange in Mine Water Treatment -- 2.2.1 Ion Exchange Terminology -- 2.2.2 Fundamentals of Ion Exchange Process -- 2.2.3 Selectivity of Ion-Exchange Materials -- 2.2.4 Chelating Cation Exchangers -- 2.3 Laboratory-Scale Ion Exchange Column Experiments -- 2.3.1 General Introduction to the Setup -- 2.3.2 Column Loading Process -- 2.3.3 Mass Transfer Zone -- 2.3.4 Regeneration Process (Deloading) -- 2.3.5 Metal Separation by Ion Exchange -- 2.3.6 Mass Balance Calculations -- 2.4 Case Study: Selective Recovery of Copper and Cobalt From a Chilean Mine Water -- 2.4.1 Problem Description and Objectives -- 2.4.2 Recovery of Copper from Mining Influenced Water -- 2.4.3 Cobalt Enrichment Using the Runoff Water from Previous Column Experiments -- 2.4.3.1 Column Experiment with TP 220 Resin Without pH Adjustment -- 2.4.3.2 Comparison of Breakthrough Curves in Cobalt Enrichment Experiments -- 2.4.4 Copper-Cobalt Separation During the Deloading Process -- 2.5 Case Study: Recovery of Zinc from Abandoned Mine Water Galleries in Saxony, Germany -- 2.6 Perspectives and Challenges -- Acknowledgments -- References -- Chapter 3 Remediation of Acid Mine Drainage Using Natural Materials: A Systematic Review -- 3.1 Introduction -- 3.2 Acid Mine Drainage -- 3.3 Formation of the Acid Mine Drainage -- 3.4 Potential Impacts of Acid Mine Drainage -- 3.4.1 The Impacts of AMD on the Environment and Ecology -- 3.5 Acid Mine Drainage Abatement/Prevention -- 3.6 Mechanisms of Pollutants Removal From AMD -- 3.6.1 Active Treatment.
3.6.2 Chemical Precipitation -- 3.6.3 Adsorption -- 3.6.4 Passive Treatment -- 3.6.5 Other Treatment Methods -- 3.6.5.1 Ion Exchange -- 3.6.5.2 Membrane Filtration -- 3.6.5.3 Acid Mine Drainage Treatment Using Native Materials -- 3.7 Conclusion -- References -- Chapter 4 Recent Development of Active Technologies for AMD Treatment -- Abbreviations -- 4.1 Introduction -- 4.1.1 Difference Between Active and Nonactive AMD Treatment Methods -- 4.1.2 Conventional Active Techniques for AMD Treatment -- 4.1.2.1 Alkali/Alkaline Neutralization Processes -- 4.1.2.2 In Situ Active AMD Treatment Processes -- 4.1.2.3 Microbiological Active AMD Treatment Systems -- 4.2 Recent Developments of Active AMD Treatment Technologies -- 4.2.1 Resource Recovery From Active AMD Treatment Technologies -- 4.2.1.1 Continuous Counter-Current-Based Technologies -- 4.2.1.2 Continuous Ion Filtration for Acid Mine Drainage Treatment -- 4.2.2 The Alkali-Barium-Calcium Process -- 4.2.3 Magnesium-Barium Oxide (MBO) Process -- 4.2.4 HybridICE Freeze Desalination Technology -- 4.2.5 Evaporation-Based Technologies -- 4.2.5.1 Multieffect Membrane Distillation (MEND) for AMD Treatment -- 4.2.5.2 Desalination of AMD Using Dewvaporation Process -- 4.2.5.3 Membrane-Based Technologies -- 4.3 Recent Disruptive Developments of AMD Treatment Technologies -- 4.3.1 Tailing Technology -- 4.3.2 Advanced Oxidation Processes -- 4.3.2.1 Ferrate Oxidation-Neutralization Process -- 4.3.2.2 Treatment of AMD by Ozone Oxidation -- 4.3.2.3 Ion-Exchange Technology for Active AMD Treatment -- References -- Chapter 5 Buffering Capacity of Soils in Mining Areas and Mitigation of Acid Mine Drainage Formation -- Abbreviations -- 5.1 Introduction -- 5.2 Control of Acid Mine Drainage -- 5.2.1 Water Covers -- 5.2.2 Mine Land Reclamation -- 5.2.3 Biocidal AMD Control -- 5.2.4 Alternative Dump Construction.
5.3 Treatment of Acid Mine Drainage -- 5.3.1 Active Treatment -- 5.3.1.1 Limestone -- 5.3.1.2 Hydrated Lime -- 5.3.1.3 Quicklime -- 5.3.1.4 Soda Ash -- 5.3.1.5 Caustic Soda -- 5.3.1.6 Ammonia -- 5.3.2 Passive Treatment -- 5.3.2.1 Biological Passive Treatment Systems -- 5.3.2.2 Geochemical Passive Treatment Systems -- 5.3.3 Emerging Passive Treatment Systems -- 5.3.3.1 Phytoremediation -- References -- Chapter 6 Novel Approaches to Passive and Semi-Passive Treatment of Zinc.Bearing Circumneutral Mine Waters in England and Wales -- 6.1 Introduction -- 6.1.1 Active Treatment Options for Zn -- 6.1.2 Passive Treatment Options for Zn -- 6.2 Hybrid Semi-Passive Treatment: Na2CO3 Dosing and Other Water Treatment Reagents -- 6.2.1 Abbey Consols Mine Water -- 6.2.2 Laboratory Scale Na2CO3 Dosing -- 6.2.3 Practical Implementation of Na2CO3 Dosing -- 6.3 Polishing of Trace Metals With Vertical Flow Reactors -- 6.4 Concluding Remarks -- References -- Chapter 7 Recovery of Drinking Water and Valuable Metals From Iron-Rich Acid Mine Water Through a Combined Biological, Chemical, and Physical Treatment Process -- 7.1 Introduction -- 7.1.1 General Problem with Mine Water -- 7.1.2 Legislation -- 7.1.3 Ideal Solution -- 7.2 Objectives -- 7.3 Literature -- 7.3.1 Mine Water Treatment Processes -- 7.3.1.1 Limestone -- 7.3.1.2 Gypsum Crystallization and Inhibition -- 7.3.1.3 ROC -- 7.3.1.4 Biological Iron (II) Oxidation -- 7.3.1.5 Selective Metal Removal -- 7.3.2 Solubilities -- 7.3.3 Pigment -- 7.4 Materials and Methods -- 7.4.1 Fe2+ Oxidation -- 7.4.1.1 Feedstock -- 7.4.1.2 Equipment -- 7.4.1.3 Procedure -- 7.4.1.4 Experimental -- 7.4.2 Neutralization (CaCO3, Na2CO3 and MgO) -- 7.4.2.1 Feedstock -- 7.4.2.2 Equipment -- 7.4.2.3 Procedure -- 7.4.2.4 Experimental -- 7.4.3 pH 7.5 Sludge From Na2CO3 as Alkali for Fe3+ Removal -- 7.4.3.1 Feedstock -- 7.4.3.2 Equipment.
7.4.3.3 Procedure -- 7.4.3.4 Experimental -- 7.4.4 Inhibition -- 7.4.4.1 Feedstock -- 7.4.4.2 Equipment -- 7.4.4.3 Procedure -- 7.4.4.4 Experimental -- 7.4.5 MgO/SiO2 Separation -- 7.4.5.1 Feedstock -- 7.4.5.2 Equipment -- 7.4.5.3 Procedure -- 7.4.5.4 Experimental -- 7.4.6 SiO2 Removal -- 7.4.7 Pigment Formation -- 7.4.7.1 Feedstock -- 7.4.7.2 Equipment -- 7.4.7.3 Procedure -- 7.4.7.4 Experimental -- 7.4.8 Analytical -- 7.4.9 Characterization of the Sludge -- 7.4.10 OLI -- 7.5 Results and Discussion -- 7.5.1 Chemical Composition -- 7.5.2 Biological Fe2+-Oxidation -- 7.5.3 CaCO3 as Alkali for Removal of Fe3+ and Remaining Metals -- 7.5.3.1 Limestone Neutralization -- 7.5.3.2 pH 7.5 Sludge from Na2CO3 as Alkali for Fe+3 Removal -- 7.5.4 MgO and Na2CO3 as Alkalis for Selective Removal of Fe3+ and Al3+ -- 7.5.4.1 Fe3+ Removal with MgO -- 7.5.4.2 Al3+ Removal with Na2CO3 -- 7.5.4.3 Metal Behavior as Predicted by OLI Simulations -- 7.5.5 Gypsum Crystallization -- 7.5.5.1 Kinetics Gypsum Seed Crystal Concentration and Reaction Order -- 7.5.5.2 Inhibition of Gypsum Crystallization in the Absence of Fe(OH)3 at Neutral pH -- 7.5.6 Separation of MgO and SiO2 -- 7.5.7 Si4+ Removal from Solution -- 7.5.8 Fe(OH)3 Purity and Pigment Formation -- 7.5.9 Economic Feasibility -- 7.6 Conclusions -- Acknowledgment -- References -- Chapter 8 Acid Mine Drainage Treatment Technologies: Challenges and Future Perspectives -- 8.1 Introduction -- 8.2 Acid Mine Drainage -- 8.2.1 Acid Mine Drainage Formation -- 8.2.2 Roles of Different Factors Influencing AMD Formation -- 8.2.2.1 Role of Bacteria in Acid Mine Drainage Generation -- 8.2.2.2 Role of Oxygen in Acid Mine Drainage Generation -- 8.2.2.3 Role of Water in Acid Mine Drainage Generation -- 8.2.2.4 Other Factors Influencing the Generation of AMD -- 8.3 Types of Mine Drainage -- 8.3.1 Neutral/Alkaline Mine Drainage.
8.4 Physicochemical Properties of AMD.
Record Nr. UNINA-9910830309803321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Photoreactors in advanced oxidation processes : the future of wastewater treatment / / edited by Elvis Fosso-Kankeu, Sadanand Pandey and Suprakas Sinha Ray
Photoreactors in advanced oxidation processes : the future of wastewater treatment / / edited by Elvis Fosso-Kankeu, Sadanand Pandey and Suprakas Sinha Ray
Pubbl/distr/stampa Hoboken, NJ : , : Wiley : , : Beverly, MA : , : Scrivener Publishing, , 2023
Descrizione fisica 1 online resource (360 pages) : illustrations
Disciplina 628.168
Soggetto topico Sewage - Purification - Oxidation
ISBN 1-394-16728-8
1-394-16727-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Advances in Photocatalysts Synthesis -- Chapter 1 Advancement and New Challenges in Heterogeneous Photocatalysts for Industrial Wastewater Treatment in the 21st Century -- 1.1 Introduction -- 1.2 Development of Heterogeneous Photocatalysts -- 1.3 Mechanism of Action of Heterogeneous Photocatalysis -- 1.4 Recent Advances in Heterogeneous Photocatalyst -- 1.5 Heterostructure Photocatalysts for the Degradation of Organic Pollutants -- 1.6 Photoreactors -- 1.7 Photoreactors for the Degradation of Volatile Organic Compounds -- 1.7.1 Annular Reactors -- 1.7.2 Plate Reactor -- 1.7.3 Packed Bed Reactors -- 1.7.4 Honeycomb Monolith Reactors -- 1.7.5 Fluidized Bed Reactors -- 1.7.6 Batch Reactors -- 1.7.7 Parabolic Trough Photoreactors -- 1.7.8 Inclined Flat Photoreactors -- 1.7.9 Gas Phase Photoreactors -- 1.8 Advantages and Disadvantages of Heterogeneous Photocatalysis -- 1.9 Conclusion -- Acknowledgment -- References -- Chapter 2 Role of Heterogeneous Catalysts for Advanced Oxidation Process in Wastewater Treatment -- Abbreviations -- 2.1 Introduction -- 2.1.1 Advanced Oxidation Processes (AOPs) -- 2.1.2 AOPs Classification -- 2.1.2.1 Catalytic Oxidation -- 2.1.2.2 Heterogeneous Catalytic Oxidation -- 2.2 Effect of Pollutant -- 2.3 Type of Catalysts -- 2.3.1 Metal Organic Frameworks -- 2.3.1.1 Hydro (Solvo) Thermal Technique -- 2.3.2 Metal Oxides -- 2.3.2.1 Coprecipitation Method -- 2.3.2.2 Hydrothermal Synthesis -- 2.3.2.3 Sol-Gel Process -- 2.3.2.4 Bioreduction Method -- 2.3.2.5 Solvent System-Based Green Synthesis -- 2.3.3 Perovskites -- 2.3.3.1 Ultrasound-Assisted Synthesis of Perovskites -- 2.3.3.2 Microwave-Assisted Synthesis of Perovskites -- 2.3.3.3 Mechanosynthesis of Perovskites -- 2.3.4 Layered Double Hydroxides -- 2.3.4.1 Coprecipitation by the Addition of Base.
2.3.5 Graphene -- 2.3.5.1 Electrochemical (EC) Processes -- 2.3.5.2 Water Electrolytic Oxidation -- 2.4 Some Recent Heterogeneous Catalysts for Advanced Oxidation Process -- 2.5 Conclusions and Future Prospect -- Acknowledgement -- References -- Chapter 3 Green Synthesis of Photocatalysts and its Applications in Wastewater Treatment -- 3.1 Introduction -- 3.2 Photocatalysts and Green Chemistry -- 3.2.1 Nanophotocatalysts (NPCs) -- 3.2.2 Plant-Mediated Green Synthesis of NPCs -- 3.2.3 Biopolymer-Mediated Synthesis of NPCs -- 3.2.3.1 Alginic Acid -- 3.2.3.2 Carrageenan -- 3.2.3.3 Chitin and Chitosan -- 3.2.3.4 Guar Gum -- 3.2.3.5 Cellulose -- 3.2.3.6 Xanthan Gum -- 3.2.4 Green Synthesis of NPCs Using Bacteria, Algae, and Fungus -- 3.2.5 Characterization of NPCs Using Various Analytical Techniques -- 3.2.5.1 UV-Visible Spectroscopy -- 3.2.5.2 XRD -- 3.2.5.3 SEM, HR-TEM, EDX, and AFM -- 3.2.5.4 Fourier Transform Infrared Spectroscopy -- 3.2.5.5 Dynamic Light Scattering -- 3.2.5.6 Brunauer-Emmett-Teller (BET) -- 3.2.5.7 Barrett-Joyner-Halenda -- 3.2.6 Application of Green Synthesized NPCs in Wastewater Treatment -- 3.3 Limitations and Future Aspects -- 3.4 Conclusion -- References -- Chapter 4 Green Synthesis of Metal Ferrite Nanoparticles for the Photocatalytic Degradation of Dyes in Wastewater -- Abbreviations -- 4.1 Introduction -- 4.2 Metal Ferrite Nanoparticles -- 4.3 General Synthesis Methods of Metal Ferrites and Their Limitations -- 4.4 Biological Synthesis of Metal Ferrite Nanostructures -- 4.4.1 Synthesis of Metal Ferrite Nanostructures Using Bacteria -- 4.4.2 Synthesis of Metal Ferrites Nanostructures Using Fungi -- 4.4.3 Synthesis of Metal Ferrites Nanostructures Using Plant Extracts -- 4.5 Plant-Derived Metal Ferrites as Photocatalysts for Dye Degradation.
4.5.1 Effect of Depositing Noble and Transition Metal on Metal Ferrites for Photodegradation -- 4.5.2 Effect of Carbon Deposited on Metal Ferrites for Photocatalytic Degradation -- 4.5.3 Effect of Coupling Metal Oxide Semiconductors with Metal Ferrites for Photocatalytic Degradation -- 4.5.4 Biological Applications of Plant-Derived Metal Ferrites -- 4.6 Challenges of these Materials and Photocatalysis -- 4.7 Conclusion: Future Perspectives -- References -- Part 2: Advanced Oxidation Processes -- Chapter 5 Selected Advanced Oxidation Processes for Wastewater Remediation -- 5.1 Introduction -- 5.2 Photocatalysis and Ozonation -- 5.2.1 Photocatalysis -- 5.2.2 Ozonation -- 5.3 Hybrid AOP Technologies -- 5.3.1 Hydrodynamic Cavitation -- 5.3.2 Hybrid AOP Systems Based on Hydrodynamic Cavitation -- 5.3.3 Hybrid AOP Systems Based on Ultrasound Radiation -- 5.3.3.1 Sonoelectrochemical Oxidation -- 5.3.3.2 Sonophotocatalytic Degradation -- 5.4 Membrane-Based AOPs -- 5.5 Conclusion and Future Perspectives -- References -- Chapter 6 Advanced Oxidation Processes-Mediated Removal of Aqueous Ammonia Nitrogen in Wastewater -- Abbreviations -- 6.1 Introduction -- 6.2 Basic Chemistry and Occurrence of Ammonia Nitrogen -- 6.2.1 Basic Chemistry of Ammonia Nitrogen -- 6.2.2 Sources of Ammonia Nitrogen -- 6.2.3 Effects of Ammonia Nitrogen on Aquaculture Species -- 6.3 Photocatalytic Technique for Removal of Aqueous Ammonia Nitrogen From Wastewater -- 6.3.1 TiO2/TiO2-Based Photocatalyst -- 6.3.2 Modified TiO2 Photocatalyst -- 6.4 Ozonation Technique for Removal of Aqueous Ammonia Nitrogen From Wastewater -- 6.4.1 Noncatalytic Ozonation of Ammonia Nitrogen -- 6.4.2 Catalytic Ozonation of Ammonia Nitrogen -- 6.5 Conclusion and Future Prospects -- Acknowledgments -- References -- Part 3: Design and Modelling of Photoreactors.
Chapter 7 Recent Advances in Photoreactors for Water Treatment -- 7.1 Introduction -- 7.2 Photocatalysis Fundamentals and Mechanism -- 7.3 Configuration of Photoreactor -- 7.3.1 Source of Light Irradiation -- 7.3.2 Geometry of Photoreactor -- 7.3.3 Light Source Placement and Distribution -- 7.3.4 Photoreactor Materials -- 7.4 Types of Photoreactors -- 7.4.1 Slurry Photoreactors -- 7.4.2 Photocatalytic Membrane Photoreactors -- 7.4.3 Rotating Drum Photoreactors -- 7.4.4 Microphotoreactors -- 7.4.5 Annular Photoreactor (APR) -- 7.4.6 Closed-Loop Step Photoreactors -- 7.5 Photocatalytic Water Purification Using Photoreactors -- 7.6 Challenges for Effective Photoreactors -- 7.7 Conclusion -- References -- Chapter 8 Design of Photoreactors for Effective Dye Degradation -- Abbreviations -- 8.1 Introduction -- 8.1.1 Mechanisms and Theory of AOP -- 8.1.2 Design of Photoreactors -- 8.1.2.1 Source of Irradiation -- 8.1.2.2 Wavelength/Lamp Selection -- 8.1.3 Placement of Light Source and Light Distribution -- 8.2 Different Photoreactors Are Used for Wastewater Treatment -- 8.2.1 Some Typical Photoreactors Used for Wastewater Treatment Are Described Below -- 8.2.2 Homogenous and Heterogenous Systems -- 8.2.3 Heterogenous Photocatalyst Arrangement -- 8.2.4 Amount of Photocatalyst -- 8.3 Photoreactors Designed to Work Under Visible-Light Irradiation Toward Wastewater Treatment -- 8.3.1 Limitations of the Currently Employed Photoreactors and Future Scope -- 8.4 Current and Future Developments -- References -- Chapter 9 Simulation of Photocatalytic Reactors -- Abbreviations -- 9.1 Introduction -- 9.2 Modeling of Light Distribution -- 9.2.1 Light Distribution -- 9.2.2 Light Distribution Methods -- 9.2.3 Simulation Parameters -- 9.2.4 Influence of Bubbles on Light Distribution -- 9.2.5 Validation of Light Distribution Models -- 9.3 Photocatalysis Kinetics.
9.4 Conclusion -- References -- Chapter 10 The Development of Self-Powered Nanoelectrocatalytic Reactor for Simultaneous Piezo-Catalytic Degradation of Bacteria and Organic Dyes in Wastewater -- Abbreviations -- 10.1 Introduction -- 10.2 Degradation Techniques -- 10.2.1 Electrochemical Advanced Oxidation Processes (EAOPs) -- 10.3 Characteristics and Properties of Piezoelectric Materials -- 10.3.1 Natural Piezoelectric Materials -- 10.3.2 Synthetic Piezoelectric Materials -- 10.4 Synthesis of Piezoelectric Materials -- 10.4.1 Electrospinning Technique -- 10.4.2 Template Synthesis -- 10.4.3 Mixed Metal Oxide (MMO)/Solid State Synthesis -- 10.4.4 Hydrothermal/Solvothermal Method -- 10.4.5 Sol-Gel Method -- 10.5 Challenges of Piezoelectric Nanomaterials/Nanogenerators -- 10.6 Application of Piezoelectric Materials for Piezo-Electrocatalytic Degradation of Dyes and Bacteria in Wastewater -- 10.6.1 Piezo-Electrocatalytic Degradation of Organic Dyes and Bacteria in Wastewater -- 10.7 Conclusion and Future Perspectives -- Acknowledgments -- References -- Index -- EULA.
Record Nr. UNINA-9910830758503321
Hoboken, NJ : , : Wiley : , : Beverly, MA : , : Scrivener Publishing, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui