top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mixed finite element methods and applications / / Daniele Boffi, Franco Brezzi, Michel Fortin
Mixed finite element methods and applications / / Daniele Boffi, Franco Brezzi, Michel Fortin
Autore Boffi Daniele
Edizione [1st ed. 2013.]
Pubbl/distr/stampa New York, : Springer, 2013
Descrizione fisica 1 online resource (xiv, 685 pages) : illustrations
Disciplina 518.25
Altri autori (Persone) BrezziF <1945-> (Franco)
FortinMichel
Collana Springer series in computational mathematics
Soggetto topico Finite element method
ISBN 3-642-36519-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Variational Formulations and Finite Element Methods -- Function Spaces and Finite Element Approximations -- Algebraic Aspects of Saddle Point Problems -- Saddle Point Problems in Hilbert spaces -- Approximation of Saddle Point Problems -- Complements: Stabilisation Methods, Eigenvalue Problems -- Mixed Methods for Elliptic Problems -- Incompressible Materials and Flow Problems -- Complements on Elasticity Problems -- Complements on Plate Problems -- Mixed Finite Elements for Electromagnetic Problems -- Index.        .
Record Nr. UNINA-9910437872003321
Boffi Daniele  
New York, : Springer, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mixed Finite Elements, Compatibility Conditions, and Applications [[electronic resource] ] : Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26 - July 1, 2006 / / by Daniele Boffi, Franco Brezzi, Leszek F. Demkowicz, Ricardo G. Durán, Richard S. Falk, Michel Fortin ; edited by Daniele Boffi, Lucia Gastaldi
Mixed Finite Elements, Compatibility Conditions, and Applications [[electronic resource] ] : Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26 - July 1, 2006 / / by Daniele Boffi, Franco Brezzi, Leszek F. Demkowicz, Ricardo G. Durán, Richard S. Falk, Michel Fortin ; edited by Daniele Boffi, Lucia Gastaldi
Autore Boffi Daniele
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2008
Descrizione fisica 1 online resource (X, 244 p. 36 illus.)
Disciplina 620.00151535
Collana C.I.M.E. Foundation Subseries
Soggetto topico Numerical analysis
Partial differential equations
Physics
Continuum physics
Global analysis (Mathematics)
Manifolds (Mathematics)
Numerical Analysis
Partial Differential Equations
Numerical and Computational Physics, Simulation
Classical and Continuum Physics
Global Analysis and Analysis on Manifolds
ISBN 3-540-78319-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Mixed Finite Element Methods -- Finite Elements for the Stokes Problem -- Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations -- Finite Element Methods for Linear Elasticity -- Finite Elements for the Reissner–Mindlin Plate.
Record Nr. UNISA-996466537103316
Boffi Daniele  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2008
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Mixed Finite Elements, Compatibility Conditions, and Applications : Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26 - July 1, 2006 / / by Daniele Boffi, Franco Brezzi, Leszek F. Demkowicz, Ricardo G. Durán, Richard S. Falk, Michel Fortin ; edited by Daniele Boffi, Lucia Gastaldi
Mixed Finite Elements, Compatibility Conditions, and Applications : Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26 - July 1, 2006 / / by Daniele Boffi, Franco Brezzi, Leszek F. Demkowicz, Ricardo G. Durán, Richard S. Falk, Michel Fortin ; edited by Daniele Boffi, Lucia Gastaldi
Autore Boffi Daniele
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2008
Descrizione fisica 1 online resource (X, 244 p. 36 illus.)
Disciplina 620.00151535
Collana C.I.M.E. Foundation Subseries
Soggetto topico Numerical analysis
Differential equations, Partial
Physics
Field theory (Physics)
Global analysis (Mathematics)
Manifolds (Mathematics)
Numerical Analysis
Partial Differential Equations
Numerical and Computational Physics, Simulation
Classical and Continuum Physics
Global Analysis and Analysis on Manifolds
ISBN 3-540-78319-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Mixed Finite Element Methods -- Finite Elements for the Stokes Problem -- Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations -- Finite Element Methods for Linear Elasticity -- Finite Elements for the Reissner–Mindlin Plate.
Record Nr. UNINA-9910483123003321
Boffi Daniele  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical methods for mixed finite element problems : applications to incompressible materials and contact problems / / Jean Deteix, Thierno Diop and Michel Fortin
Numerical methods for mixed finite element problems : applications to incompressible materials and contact problems / / Jean Deteix, Thierno Diop and Michel Fortin
Autore Deteix Jean
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (119 pages)
Disciplina 620.00151535
Collana Lecture Notes in Mathematics
Soggetto topico Finite element method
Mètode dels elements finits
Soggetto genere / forma Llibres electrònics
ISBN 3-031-12616-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 2 Mixed Problems -- 2.1 Some Reminders About Mixed Problems -- 2.1.1 The Saddle Point Formulation -- 2.1.2 Existence of a Solution -- 2.1.3 Dual Problem -- 2.1.4 A More General Case: A Regular Perturbation -- 2.1.5 The Case -- 2.2 The Discrete Problem -- 2.2.1 Error Estimates -- 2.2.2 The Matricial Form of the Discrete Problem -- 2.2.3 The Discrete Dual Problem: The Schur Complement -- 2.3 Augmented Lagrangian -- 2.3.1 Augmented or Regularised Lagrangians -- 2.3.2 Discrete Augmented Lagrangian in Matrix Form -- 2.3.3 Augmented Lagrangian and the Condition Number of the Dual Problem -- 2.3.4 Augmented Lagrangian: An Iterated Penalty -- 3 Iterative Solvers for Mixed Problems -- 3.1 Classical Iterative Methods -- 3.1.1 Some General Points -- Linear Algebra and Optimisation -- Norms -- Krylov Subspace -- Preconditioning -- 3.1.2 The Preconditioned Conjugate Gradient Method -- 3.1.3 Constrained Problems: Projected Gradient and Variants -- Equality Constraints: The Projected Gradient Method -- Inequality Constraints -- Positivity Constraints -- Convex Constraints -- 3.1.4 Hierarchical Basis and Multigrid Preconditioning -- 3.1.5 Conjugate Residuals, Minres, Gmres and the Generalised Conjugate Residual Algorithm -- The Generalised Conjugate Residual Method -- The Left Preconditioning -- The Right Preconditioning -- The Gram-Schmidt Algorithm -- GCR for Mixed Problems -- 3.2 Preconditioners for the Mixed Problem -- 3.2.1 Factorisation of the System -- Solving Using the Factorisation -- 3.2.2 Approximate Solvers for the Schur Complement and the Uzawa Algorithm -- The Uzawa Algorithm -- 3.2.3 The General Preconditioned Algorithm -- 3.2.4 Augmented Lagrangian as a Perturbed Problem -- 4 Numerical Results: Cases Where Q= Q -- 4.1 Mixed Laplacian Problem -- 4.1.1 Formulation of the Problem.
4.1.2 Discrete Problem and Classic Numerical Methods -- The Augmented Lagrangian Formulation -- 4.1.3 A Numerical Example -- 4.2 Application to Incompressible Elasticity -- 4.2.1 Nearly Incompressible Linear Elasticity -- 4.2.2 Neo-Hookean and Mooney-Rivlin Materials -- Mixed Formulation for Mooney-Rivlin Materials -- 4.2.3 Numerical Results for the Linear Elasticity Problem -- 4.2.4 The Mixed-GMP-GCR Method -- Approximate Solver in u -- 4.2.5 The Test Case -- Number of Iterations and Mesh Size -- Comparison of the Preconditioners of Sect.3.2 -- Effect of the Solver in u -- 4.2.6 Large Deformation Problems -- Neo-Hookean Material -- Mooney-Rivlin Material -- 4.3 Navier-Stokes Equations -- 4.3.1 A Direct Iteration: Regularising the Problem -- 4.3.2 A Toy Problem -- 5 Contact Problems: A Case Where Q≠Q -- 5.1 Imposing Dirichlet's Condition Through a Multiplier -- 5.1.1 and Its Dual -- 5.1.2 A Steklov-Poincaré operator -- Using This as a Solver -- 5.1.3 Discrete Problems -- The Matrix Form and the Discrete Schur Complement -- 5.1.4 A Discrete Steklov-Poincaré Operator -- 5.1.5 Computational Issues, Approximate Scalar Product -- Simplified Forms of the ps: [/EMC pdfmark [/Subtype /Span /ActualText (script upper S script upper P Subscript h) /StPNE pdfmark [/StBMC pdfmarkSPhps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark Operator and Preconditioning -- 5.1.6 The Formulation -- The Choice of h -- 5.1.7 A Toy Model for the Contact Problem -- The Discrete Formulation -- The Active Set Strategy -- 5.2 Sliding Contact -- 5.2.1 The Discrete Contact Problem -- Contact Status -- 5.2.2 The Algorithm for Sliding Contact -- A Newton Method -- The Active Set Strategy -- 5.2.3 A Numerical Example of Contact Problem -- 6 Solving Problems with More Than One Constraint -- 6.1 A Model Problem -- 6.2 Interlaced Method -- 6.3 Preconditioners Based on Factorisation.
6.3.1 The Sequential Method -- 6.4 An Alternating Procedure -- 7 Conclusion -- Bibliography -- Index.
Record Nr. UNINA-9910595041303321
Deteix Jean  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical methods for mixed finite element problems : applications to incompressible materials and contact problems / / Jean Deteix, Thierno Diop and Michel Fortin
Numerical methods for mixed finite element problems : applications to incompressible materials and contact problems / / Jean Deteix, Thierno Diop and Michel Fortin
Autore Deteix Jean
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (119 pages)
Disciplina 620.00151535
Collana Lecture Notes in Mathematics
Soggetto topico Finite element method
Mètode dels elements finits
Soggetto genere / forma Llibres electrònics
ISBN 3-031-12616-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 2 Mixed Problems -- 2.1 Some Reminders About Mixed Problems -- 2.1.1 The Saddle Point Formulation -- 2.1.2 Existence of a Solution -- 2.1.3 Dual Problem -- 2.1.4 A More General Case: A Regular Perturbation -- 2.1.5 The Case -- 2.2 The Discrete Problem -- 2.2.1 Error Estimates -- 2.2.2 The Matricial Form of the Discrete Problem -- 2.2.3 The Discrete Dual Problem: The Schur Complement -- 2.3 Augmented Lagrangian -- 2.3.1 Augmented or Regularised Lagrangians -- 2.3.2 Discrete Augmented Lagrangian in Matrix Form -- 2.3.3 Augmented Lagrangian and the Condition Number of the Dual Problem -- 2.3.4 Augmented Lagrangian: An Iterated Penalty -- 3 Iterative Solvers for Mixed Problems -- 3.1 Classical Iterative Methods -- 3.1.1 Some General Points -- Linear Algebra and Optimisation -- Norms -- Krylov Subspace -- Preconditioning -- 3.1.2 The Preconditioned Conjugate Gradient Method -- 3.1.3 Constrained Problems: Projected Gradient and Variants -- Equality Constraints: The Projected Gradient Method -- Inequality Constraints -- Positivity Constraints -- Convex Constraints -- 3.1.4 Hierarchical Basis and Multigrid Preconditioning -- 3.1.5 Conjugate Residuals, Minres, Gmres and the Generalised Conjugate Residual Algorithm -- The Generalised Conjugate Residual Method -- The Left Preconditioning -- The Right Preconditioning -- The Gram-Schmidt Algorithm -- GCR for Mixed Problems -- 3.2 Preconditioners for the Mixed Problem -- 3.2.1 Factorisation of the System -- Solving Using the Factorisation -- 3.2.2 Approximate Solvers for the Schur Complement and the Uzawa Algorithm -- The Uzawa Algorithm -- 3.2.3 The General Preconditioned Algorithm -- 3.2.4 Augmented Lagrangian as a Perturbed Problem -- 4 Numerical Results: Cases Where Q= Q -- 4.1 Mixed Laplacian Problem -- 4.1.1 Formulation of the Problem.
4.1.2 Discrete Problem and Classic Numerical Methods -- The Augmented Lagrangian Formulation -- 4.1.3 A Numerical Example -- 4.2 Application to Incompressible Elasticity -- 4.2.1 Nearly Incompressible Linear Elasticity -- 4.2.2 Neo-Hookean and Mooney-Rivlin Materials -- Mixed Formulation for Mooney-Rivlin Materials -- 4.2.3 Numerical Results for the Linear Elasticity Problem -- 4.2.4 The Mixed-GMP-GCR Method -- Approximate Solver in u -- 4.2.5 The Test Case -- Number of Iterations and Mesh Size -- Comparison of the Preconditioners of Sect.3.2 -- Effect of the Solver in u -- 4.2.6 Large Deformation Problems -- Neo-Hookean Material -- Mooney-Rivlin Material -- 4.3 Navier-Stokes Equations -- 4.3.1 A Direct Iteration: Regularising the Problem -- 4.3.2 A Toy Problem -- 5 Contact Problems: A Case Where Q≠Q -- 5.1 Imposing Dirichlet's Condition Through a Multiplier -- 5.1.1 and Its Dual -- 5.1.2 A Steklov-Poincaré operator -- Using This as a Solver -- 5.1.3 Discrete Problems -- The Matrix Form and the Discrete Schur Complement -- 5.1.4 A Discrete Steklov-Poincaré Operator -- 5.1.5 Computational Issues, Approximate Scalar Product -- Simplified Forms of the ps: [/EMC pdfmark [/Subtype /Span /ActualText (script upper S script upper P Subscript h) /StPNE pdfmark [/StBMC pdfmarkSPhps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark Operator and Preconditioning -- 5.1.6 The Formulation -- The Choice of h -- 5.1.7 A Toy Model for the Contact Problem -- The Discrete Formulation -- The Active Set Strategy -- 5.2 Sliding Contact -- 5.2.1 The Discrete Contact Problem -- Contact Status -- 5.2.2 The Algorithm for Sliding Contact -- A Newton Method -- The Active Set Strategy -- 5.2.3 A Numerical Example of Contact Problem -- 6 Solving Problems with More Than One Constraint -- 6.1 A Model Problem -- 6.2 Interlaced Method -- 6.3 Preconditioners Based on Factorisation.
6.3.1 The Sequential Method -- 6.4 An Alternating Procedure -- 7 Conclusion -- Bibliography -- Index.
Record Nr. UNISA-996490271503316
Deteix Jean  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui