top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Half-metallic materials and their properties [[electronic resource] /] / C.Y. Fong, J.E. Pask & L.H. Yang
Half-metallic materials and their properties [[electronic resource] /] / C.Y. Fong, J.E. Pask & L.H. Yang
Autore Fong C. Y (Ching-yao)
Pubbl/distr/stampa London, UK, : Imperial College Press
Descrizione fisica 1 online resource (304 p.)
Disciplina 620
620.16
Altri autori (Persone) PaskJ. E
YangL. H
Collana Materials for engineering
Soggetto topico Metallic composites
Metals
Soggetto genere / forma Electronic books.
ISBN 1-299-46215-4
1-908977-13-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Acknowledgments; Preface; Contents; 1. Introduction; 1.1 Background; 1.2 Classes of Half-metals; 1.3 Half-metallic Devices; 2. Methods of Studying Half-metals; 2.1 Introduction; 2.2 Molecular BeamEpitaxy (MBE); 2.2.1. Schematic setup; 2.2.2. Issues concerning growth; 2.2.2.1. Substrate for Heusler alloys; 2.2.2.2. Substrate for HMs with ZB structure; 2.2.2.3. Temperature; 2.3 Characterization of Samples; 2.3.1. Reflection high-energy electron diffraction (RHEED); 2.3.1.1. Basic information; 2.3.1.2. What is measured; 2.3.2. X-ray reflectometry (XRR); 2.3.2.1. Basic information
2.3.2.2. Schematic setup2.3.2.3. What is measured; 2.3.3. Scanning tunneling microscopy (STM); 2.3.3.1. Basic information; 2.3.3.2. What is measured; 2.3.4. Auger electron spectroscopy (AES); 2.3.4.1. Basic processes; 2.3.4.2. Simplified experimental setup; 2.3.4.3. What is measured; 2.3.4.4. Remarks; 2.4 Methods of Determining Physical Properties; 2.4.1. Magnetic properties; 2.4.1.1. SQUID-based magnetometer; 2.4.1.2. Magneto-optical Kerr effect (MOKE); 2.4.1.3. X-ray magnetic circular dichroism (XMCD); 2.4.2. Transport properties; 2.4.2.1. Magnetic tunnel junctions (MTJs)
2.4.2.2. Resistivity2.4.2.3. Hall conductivity; 2.4.3. Half-metallic properties; 2.4.3.1. Spin-polarized angle-resolved photoemission spectroscopy (ARPES); 2.4.3.2. Ferromagnet-superconductor tunneling; 2.4.3.3. Andreev reflection; 2.4.3.4. Curie temperature TC; 2.5 TheoreticalMethods; 2.5.1. Density functional theory (DFT); 2.5.1.1. Hohenberg-Kohn theorem I; 2.5.1.2. Hohenberg-Kohn theorem II; 2.5.2. Kohn-Sham equations; 2.5.2.1. Local density approximation (LDA); 2.5.2.2. Spin-polarized Kohn-Sham equations; 2.5.2.3. Generalized gradient approximation (GGA)
2.5.3. Methods of calculating electronic properties2.5.3.1. Linearized augmented plane wave (LAPW) method; 2.5.3.2. Korringa-Kohn-Rostoker (KKR) method; 2.5.3.3. Pseudopotential method; 2.5.3.4. LDA+U; 2.5.4. Methods of calculating Curie temperature TC; 2.5.4.1. Determination of the dominant excitation; 2.5.4.2. Basic idea; 2.5.4.3. Comments on practical calculations; 3. Heusler Alloys; 3.1 Introduction; 3.2 Half-Heusler and Full-Heusler Alloys; 3.3 Methods of Growing Heusler Alloys; 3.3.1. Bulk Heusler alloys; 3.3.1.1. Arc-melting method; 3.3.1.2. Tri-arc Czochralski method
3.3.2. Thin films3.3.2.1. MBE method; 3.3.2.2. Radio frequency magnetron sputtering method; 3.3.2.3. Pulsed laser deposition (PLD); 3.4 Characterization of Heusler Alloys; 3.4.1. Bulk Heusler alloys; 3.4.2. Thin films; 3.4.2.1. Auger electron spectroscopy (AES); 3.4.2.2. Low-energy electron diffraction (LEED); 3.5 Physical Properties of Bulk Heusler Alloys; 3.5.1. Magnetic moments and the Slater-Pauling rule; 3.5.2. Insulating gap in half-metallic Heusler alloys; 3.5.2.1. Half-Heusler alloys; 3.5.2.2. Full-Heusler alloys; 3.5.3. Polarization at EF; 3.5.4. Magnetic moments
3.5.5. Curie temperature TC
Record Nr. UNINA-9910452298303321
Fong C. Y (Ching-yao)  
London, UK, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Half-metallic materials and their properties / / C.Y. Fong, University of California, Davis, USA, J.E. Pask, Lawrence Livermore National Laboratory, USA, L.H. Yang, Lawrence Livermore National Laboratory, USA
Half-metallic materials and their properties / / C.Y. Fong, University of California, Davis, USA, J.E. Pask, Lawrence Livermore National Laboratory, USA, L.H. Yang, Lawrence Livermore National Laboratory, USA
Autore Fong C. Y (Ching-yao)
Pubbl/distr/stampa London, UK, : Imperial College Press
Descrizione fisica 1 online resource (xii, 291 pages) : illustrations
Disciplina 620
620.16
Collana Materials for engineering
Soggetto topico Metallic composites
ISBN 1-299-46215-4
1-908977-13-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Acknowledgments; Preface; Contents; 1. Introduction; 1.1 Background; 1.2 Classes of Half-metals; 1.3 Half-metallic Devices; 2. Methods of Studying Half-metals; 2.1 Introduction; 2.2 Molecular BeamEpitaxy (MBE); 2.2.1. Schematic setup; 2.2.2. Issues concerning growth; 2.2.2.1. Substrate for Heusler alloys; 2.2.2.2. Substrate for HMs with ZB structure; 2.2.2.3. Temperature; 2.3 Characterization of Samples; 2.3.1. Reflection high-energy electron diffraction (RHEED); 2.3.1.1. Basic information; 2.3.1.2. What is measured; 2.3.2. X-ray reflectometry (XRR); 2.3.2.1. Basic information
2.3.2.2. Schematic setup2.3.2.3. What is measured; 2.3.3. Scanning tunneling microscopy (STM); 2.3.3.1. Basic information; 2.3.3.2. What is measured; 2.3.4. Auger electron spectroscopy (AES); 2.3.4.1. Basic processes; 2.3.4.2. Simplified experimental setup; 2.3.4.3. What is measured; 2.3.4.4. Remarks; 2.4 Methods of Determining Physical Properties; 2.4.1. Magnetic properties; 2.4.1.1. SQUID-based magnetometer; 2.4.1.2. Magneto-optical Kerr effect (MOKE); 2.4.1.3. X-ray magnetic circular dichroism (XMCD); 2.4.2. Transport properties; 2.4.2.1. Magnetic tunnel junctions (MTJs)
2.4.2.2. Resistivity2.4.2.3. Hall conductivity; 2.4.3. Half-metallic properties; 2.4.3.1. Spin-polarized angle-resolved photoemission spectroscopy (ARPES); 2.4.3.2. Ferromagnet-superconductor tunneling; 2.4.3.3. Andreev reflection; 2.4.3.4. Curie temperature TC; 2.5 TheoreticalMethods; 2.5.1. Density functional theory (DFT); 2.5.1.1. Hohenberg-Kohn theorem I; 2.5.1.2. Hohenberg-Kohn theorem II; 2.5.2. Kohn-Sham equations; 2.5.2.1. Local density approximation (LDA); 2.5.2.2. Spin-polarized Kohn-Sham equations; 2.5.2.3. Generalized gradient approximation (GGA)
2.5.3. Methods of calculating electronic properties2.5.3.1. Linearized augmented plane wave (LAPW) method; 2.5.3.2. Korringa-Kohn-Rostoker (KKR) method; 2.5.3.3. Pseudopotential method; 2.5.3.4. LDA+U; 2.5.4. Methods of calculating Curie temperature TC; 2.5.4.1. Determination of the dominant excitation; 2.5.4.2. Basic idea; 2.5.4.3. Comments on practical calculations; 3. Heusler Alloys; 3.1 Introduction; 3.2 Half-Heusler and Full-Heusler Alloys; 3.3 Methods of Growing Heusler Alloys; 3.3.1. Bulk Heusler alloys; 3.3.1.1. Arc-melting method; 3.3.1.2. Tri-arc Czochralski method
3.3.2. Thin films3.3.2.1. MBE method; 3.3.2.2. Radio frequency magnetron sputtering method; 3.3.2.3. Pulsed laser deposition (PLD); 3.4 Characterization of Heusler Alloys; 3.4.1. Bulk Heusler alloys; 3.4.2. Thin films; 3.4.2.1. Auger electron spectroscopy (AES); 3.4.2.2. Low-energy electron diffraction (LEED); 3.5 Physical Properties of Bulk Heusler Alloys; 3.5.1. Magnetic moments and the Slater-Pauling rule; 3.5.2. Insulating gap in half-metallic Heusler alloys; 3.5.2.1. Half-Heusler alloys; 3.5.2.2. Full-Heusler alloys; 3.5.3. Polarization at EF; 3.5.4. Magnetic moments
3.5.5. Curie temperature TC
Record Nr. UNINA-9910779690803321
Fong C. Y (Ching-yao)  
London, UK, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Half-metallic materials and their properties / / C.Y. Fong, University of California, Davis, USA, J.E. Pask, Lawrence Livermore National Laboratory, USA, L.H. Yang, Lawrence Livermore National Laboratory, USA
Half-metallic materials and their properties / / C.Y. Fong, University of California, Davis, USA, J.E. Pask, Lawrence Livermore National Laboratory, USA, L.H. Yang, Lawrence Livermore National Laboratory, USA
Autore Fong C. Y (Ching-yao)
Pubbl/distr/stampa London, UK, : Imperial College Press
Descrizione fisica 1 online resource (xii, 291 pages) : illustrations
Disciplina 620
620.16
Collana Materials for engineering
Soggetto topico Metallic composites
ISBN 1-299-46215-4
1-908977-13-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Acknowledgments; Preface; Contents; 1. Introduction; 1.1 Background; 1.2 Classes of Half-metals; 1.3 Half-metallic Devices; 2. Methods of Studying Half-metals; 2.1 Introduction; 2.2 Molecular BeamEpitaxy (MBE); 2.2.1. Schematic setup; 2.2.2. Issues concerning growth; 2.2.2.1. Substrate for Heusler alloys; 2.2.2.2. Substrate for HMs with ZB structure; 2.2.2.3. Temperature; 2.3 Characterization of Samples; 2.3.1. Reflection high-energy electron diffraction (RHEED); 2.3.1.1. Basic information; 2.3.1.2. What is measured; 2.3.2. X-ray reflectometry (XRR); 2.3.2.1. Basic information
2.3.2.2. Schematic setup2.3.2.3. What is measured; 2.3.3. Scanning tunneling microscopy (STM); 2.3.3.1. Basic information; 2.3.3.2. What is measured; 2.3.4. Auger electron spectroscopy (AES); 2.3.4.1. Basic processes; 2.3.4.2. Simplified experimental setup; 2.3.4.3. What is measured; 2.3.4.4. Remarks; 2.4 Methods of Determining Physical Properties; 2.4.1. Magnetic properties; 2.4.1.1. SQUID-based magnetometer; 2.4.1.2. Magneto-optical Kerr effect (MOKE); 2.4.1.3. X-ray magnetic circular dichroism (XMCD); 2.4.2. Transport properties; 2.4.2.1. Magnetic tunnel junctions (MTJs)
2.4.2.2. Resistivity2.4.2.3. Hall conductivity; 2.4.3. Half-metallic properties; 2.4.3.1. Spin-polarized angle-resolved photoemission spectroscopy (ARPES); 2.4.3.2. Ferromagnet-superconductor tunneling; 2.4.3.3. Andreev reflection; 2.4.3.4. Curie temperature TC; 2.5 TheoreticalMethods; 2.5.1. Density functional theory (DFT); 2.5.1.1. Hohenberg-Kohn theorem I; 2.5.1.2. Hohenberg-Kohn theorem II; 2.5.2. Kohn-Sham equations; 2.5.2.1. Local density approximation (LDA); 2.5.2.2. Spin-polarized Kohn-Sham equations; 2.5.2.3. Generalized gradient approximation (GGA)
2.5.3. Methods of calculating electronic properties2.5.3.1. Linearized augmented plane wave (LAPW) method; 2.5.3.2. Korringa-Kohn-Rostoker (KKR) method; 2.5.3.3. Pseudopotential method; 2.5.3.4. LDA+U; 2.5.4. Methods of calculating Curie temperature TC; 2.5.4.1. Determination of the dominant excitation; 2.5.4.2. Basic idea; 2.5.4.3. Comments on practical calculations; 3. Heusler Alloys; 3.1 Introduction; 3.2 Half-Heusler and Full-Heusler Alloys; 3.3 Methods of Growing Heusler Alloys; 3.3.1. Bulk Heusler alloys; 3.3.1.1. Arc-melting method; 3.3.1.2. Tri-arc Czochralski method
3.3.2. Thin films3.3.2.1. MBE method; 3.3.2.2. Radio frequency magnetron sputtering method; 3.3.2.3. Pulsed laser deposition (PLD); 3.4 Characterization of Heusler Alloys; 3.4.1. Bulk Heusler alloys; 3.4.2. Thin films; 3.4.2.1. Auger electron spectroscopy (AES); 3.4.2.2. Low-energy electron diffraction (LEED); 3.5 Physical Properties of Bulk Heusler Alloys; 3.5.1. Magnetic moments and the Slater-Pauling rule; 3.5.2. Insulating gap in half-metallic Heusler alloys; 3.5.2.1. Half-Heusler alloys; 3.5.2.2. Full-Heusler alloys; 3.5.3. Polarization at EF; 3.5.4. Magnetic moments
3.5.5. Curie temperature TC
Record Nr. UNINA-9910822478803321
Fong C. Y (Ching-yao)  
London, UK, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Half-metallic materials and their properties / / C.Y. Fong, J.E. Pask & L.H. Yang
Half-metallic materials and their properties / / C.Y. Fong, J.E. Pask & L.H. Yang
Autore Fong C. Y (Ching-yao)
Edizione [1st ed.]
Pubbl/distr/stampa London, UK, : Imperial College Press
Descrizione fisica 1 online resource (304 pages)
Disciplina 620.16
Altri autori (Persone) PaskJ. E
YangL. H
Collana Materials for engineering
Soggetto topico Metallic composites
Metals
ISBN 9781299462151
1299462154
9781908977137
1908977132
9781908977120
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Preface -- Acknowledgments -- 1. Introduction -- 1.1 Background -- 1.2 Classes of Half-metals -- 1.3 Half-metallic Devices -- 2. Methods of Studying Half-metals -- 2.1 Introduction -- 2.2 Molecular BeamEpitaxy (MBE) -- 2.2.1. Schematic setup -- 2.2.2. Issues concerning growth -- 2.2.2.1. Substrate for Heusler alloys -- 2.2.2.2. Substrate for HMs with ZB structure -- 2.2.2.3. Temperature -- 2.3 Characterization of Samples -- 2.3.1. Reflection high-energy electron diffraction (RHEED) -- 2.3.1.1. Basic information -- 2.3.1.2. What is measured -- 2.3.2. X-ray reflectometry (XRR) -- 2.3.2.1. Basic information -- 2.3.2.2. Schematic setup -- 2.3.2.3. What is measured -- 2.3.3. Scanning tunneling microscopy (STM) -- 2.3.3.1. Basic information -- 2.3.3.2. What is measured -- 2.3.4. Auger electron spectroscopy (AES) -- 2.3.4.1. Basic processes -- 2.3.4.2. Simplified experimental setup -- 2.3.4.3. What is measured -- 2.3.4.4. Remarks -- 2.4 Methods of Determining Physical Properties -- 2.4.1. Magnetic properties -- 2.4.1.1. SQUID-based magnetometer -- 2.4.1.2. Magneto-optical Kerr effect (MOKE) -- 2.4.1.3. X-ray magnetic circular dichroism (XMCD) -- 2.4.2. Transport properties -- 2.4.2.1. Magnetic tunnel junctions (MTJs) -- 2.4.2.2. Resistivity -- 2.4.2.3. Hall conductivity -- 2.4.3. Half-metallic properties -- 2.4.3.1. Spin-polarized angle-resolved photoemission spectroscopy (ARPES) -- 2.4.3.2. Ferromagnet-superconductor tunneling -- 2.4.3.3. Andreev reflection -- 2.4.3.4. Curie temperature TC -- 2.5 TheoreticalMethods -- 2.5.1. Density functional theory (DFT) -- 2.5.1.1. Hohenberg-Kohn theorem I -- 2.5.1.2. Hohenberg-Kohn theorem II -- 2.5.2. Kohn-Sham equations -- 2.5.2.1. Local density approximation (LDA) -- 2.5.2.2. Spin-polarized Kohn-Sham equations -- 2.5.2.3. Generalized gradient approximation (GGA).
2.5.3. Methods of calculating electronic properties -- 2.5.3.1. Linearized augmented plane wave (LAPW) method -- 2.5.3.2. Korringa-Kohn-Rostoker (KKR) method -- 2.5.3.3. Pseudopotential method -- 2.5.3.4. LDA+U -- 2.5.4. Methods of calculating Curie temperature TC -- 2.5.4.1. Determination of the dominant excitation -- 2.5.4.2. Basic idea -- 2.5.4.3. Comments on practical calculations -- 3. Heusler Alloys -- 3.1 Introduction -- 3.2 Half-Heusler and Full-Heusler Alloys -- 3.3 Methods of Growing Heusler Alloys -- 3.3.1. Bulk Heusler alloys -- 3.3.1.1. Arc-melting method -- 3.3.1.2. Tri-arc Czochralski method -- 3.3.2. Thin films -- 3.3.2.1. MBE method -- 3.3.2.2. Radio frequency magnetron sputtering method -- 3.3.2.3. Pulsed laser deposition (PLD) -- 3.4 Characterization of Heusler Alloys -- 3.4.1. Bulk Heusler alloys -- 3.4.2. Thin films -- 3.4.2.1. Auger electron spectroscopy (AES) -- 3.4.2.2. Low-energy electron diffraction (LEED) -- 3.5 Physical Properties of Bulk Heusler Alloys -- 3.5.1. Magnetic moments and the Slater-Pauling rule -- 3.5.2. Insulating gap in half-metallic Heusler alloys -- 3.5.2.1. Half-Heusler alloys -- 3.5.2.2. Full-Heusler alloys -- 3.5.3. Polarization at EF -- 3.5.4. Magnetic moments -- 3.5.5. Curie temperature TC -- 3.5.6. Other magnetic properties -- 3.5.7. Disorder in Heusler alloys -- 3.5.7.1. Experimental probes -- 3.5.7.2. Theoretical investigations of disorder -- 3.6 Physical Properties of Heusler Alloys in Thin-film Form -- 3.6.1. NiMnSb -- 3.6.1.1. Stability of structure and half-metallicity -- 3.6.1.2. Spin polarization -- 3.6.1.3. Surface and interface effects -- 3.6.2. Co2MnSi -- 3.6.2.1. Growth in thin-.lm form -- 3.6.2.2. Magnetic properties -- 3.6.2.3. Transport properties -- 3.6.3. Co2FeSi -- 3.6.3.1. Growth in thin-film form -- 3.6.3.2. Characterizations -- 3.6.3.3. Magnetic properties.
3.6.3.4. Transport properties -- 4. Half-Metallic Oxides -- 4.1 Introduction -- 4.2 CrO2 -- 4.2.1. Structure -- 4.2.2. Growth -- 4.2.2.1. Thermal decomposition -- 4.2.2.2. Chemical vapor deposition (CVD) -- 4.2.3. Characterization -- 4.2.3.1. Reflection high-energy electron diffraction (RHEED) -- 4.2.3.2. X-ray diffraction (XRD) -- 4.2.3.3. Atomic force microscopy (AFM) -- 4.2.4. Transport properties -- 4.2.4.1. Point contacts and powder magnetoresistance (PMR) -- 4.2.4.2. Magnetization and magnetoresistance vs. applied external field -- 4.2.5. Half-metallic properties -- 4.2.5.1. Point-contact Andreev reflection (PCAR) -- 4.2.6. Electronic properties -- 4.2.6.1. Spin-polarized angle-resolved photoemission spectroscopy (ARPES) -- 4.2.7. Magnetic properties -- 4.2.7.1. Curie temperature TC -- 4.2.7.2. Saturation magnetic moment -- 4.2.7.3. Hysteresis loops -- 4.2.8. Theoretical studies of electronic and magnetic properties -- 4.2.8.1. Electronic properties -- 4.2.8.2. Magnetic properties -- 4.3 Fe3O4 -- 4.3.1. Structure -- 4.3.2. Growth -- 4.3.2.1. Single-crystal growth -- 4.3.2.2. Thin-film growth -- 4.3.3. Characterization -- 4.3.3.1. Si substrate -- 4.3.3.2. TiN buffer layer -- 4.3.3.3. Fe3O4 film -- 4.3.4. Physical properties -- 4.3.4.1. Half-metallic properties -- 4.3.4.2. Magnetic properties -- 4.3.4.3. Charge ordering -- 4.3.4.4. Surface properties -- 4.3.5. One-electron theory -- 4.3.5.1. Spin-polarized band structure and DOS -- 4.3.5.2. Non-spin-polarized band structure and Stoner model -- 4.3.5.3. Local spin density approximation with and without U -- 4.4 La1-x(Sr, Ca, Ba)xMnO3 -- 4.4.1. Structure -- 4.4.2. Growth and characterization -- 4.4.3. Physical properties -- 4.4.3.1. Half-metallicity -- 4.4.3.2. Magnetic and transport properties -- 4.5 Magnetic Interactions in the Oxides -- 4.5.1. Superexchange -- 4.5.1.1. Model approach.
4.5.1.2. First-principles approach -- 4.5.2. Double exchange -- 4.5.3. Magnetism in CrO2 and Fe3O4 -- 4.5.3.1. CrO2 -- 4.5.3.2. Fe3O4 -- 5. Half-metals with Simple Structures -- 5.1 Introduction -- 5.2 Half-metals with Zincblende Structure -- 5.2.1. Experiment -- 5.2.1.1. Growth -- 5.2.1.2. Characterization using X-rays -- 5.2.1.3. Magnetic properties -- 5.2.2. Theory -- 5.2.2.1. MnAs -- 5.2.2.2. MnC -- 5.2.2.3. Qualitative explanation of magnetic moments -- 5.3 Half-metallic Superlattices -- 5.3.1. CrAs/MnAs superlattices -- 5.3.2. Superlattice showing spin-polarized ballistic transport -- 5.4 QuantumDots -- 5.4.1. Experiment -- 5.4.1.1. MnAs quantum dots -- 5.4.2. Theory -- 5.4.2.1. MnAs quantum dot -- 5.5 Digital Ferromagnetic Heterostructures -- 5.5.1. Experiment -- 5.5.1.1. Growth and characterization of (Ga,Mn)As-DFH -- 5.5.1.2. Growth and characterization of (Ga,Mn)Sb-DFH -- 5.5.1.3. Physical properties of (Ga,Mn)As-DFH -- 5.5.2. Theory -- 5.5.2.1. GaAs-based DFH -- 5.5.2.2. Si-based DFH -- 5.6 One-dimensional Half-metals -- Appendix A Anisotropic Magnetoresistance -- Bibliography -- Index.
Record Nr. UNINA-9910993977603321
Fong C. Y (Ching-yao)  
London, UK, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui