2D and 3D image analysis by moments / / Jan Flusser, Tomś Suk and Barbara Zitová |
Autore | Flusser Jan |
Pubbl/distr/stampa | Chichester, [England] : , : Wiley, , 2017 |
Descrizione fisica | 1 online resource |
Disciplina | 621.36/7015159 |
Soggetto topico |
Image analysis
Moment problems (Mathematics) Invariants |
ISBN |
1-119-03937-1
1-119-03936-3 1-119-03940-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910151742503321 |
Flusser Jan | ||
Chichester, [England] : , : Wiley, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
2D and 3D image analysis by moments / / Jan Flusser, Tomś Suk and Barbara Zitová |
Autore | Flusser Jan |
Pubbl/distr/stampa | Chichester, [England] : , : Wiley, , 2017 |
Descrizione fisica | 1 online resource |
Disciplina | 621.36/7015159 |
Soggetto topico |
Image analysis
Moment problems (Mathematics) Invariants |
ISBN |
1-119-03937-1
1-119-03936-3 1-119-03940-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910820805003321 |
Flusser Jan | ||
Chichester, [England] : , : Wiley, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Moments and moment invariants in pattern recognition [[electronic resource] /] / Jan Flusser, Tomás Suk, Barbara Zitov |
Autore | Flusser Jan |
Pubbl/distr/stampa | Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : J. Wiley, 2009 |
Descrizione fisica | 1 online resource (314 p.) |
Disciplina | 515/.42 |
Altri autori (Persone) |
SukTomáš
ZitováBarbara |
Soggetto topico |
Optical pattern recognition - Mathematics
Moment problems (Mathematics) Invariants |
ISBN |
1-282-38033-8
9786612380334 0-470-68475-5 0-470-68476-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Authors' biographies; Preface; Acknowledgments; 1 Introduction to moments; 1.1 Motivation; 1.2 What are invariants?; 1.2.1 Categories of invariant; 1.3 What are moments?; 1.3.1 Geometric and complex moments; 1.3.2 Orthogonal moments; 1.4 Outline of the book; References; 2 Moment invariants to translation, rotation and scaling; 2.1 Introduction; 2.1.1 Invariants to translation; 2.1.2 Invariants to uniform scaling; 2.1.3 Traditional invariants to rotation; 2.2 Rotation invariants from complex moments; 2.2.1 Construction of rotation invariants; 2.2.2 Construction of the basis
2.2.3 Basis of invariants of the second and third orders2.2.4 Relationship to the Hu invariants; 2.3 Pseudoinvariants; 2.4 Combined invariants to TRS and contrast changes; 2.5 Rotation invariants for recognition of symmetric objects; 2.5.1 Logo recognition; 2.5.2 Recognition of simple shapes; 2.5.3 Experiment with a baby toy; 2.6 Rotation invariants via image normalization; 2.7 Invariants to nonuniform scaling; 2.8 TRS invariants in 3D; 2.9 Conclusion; References; 3 Affine moment invariants; 3.1 Introduction; 3.1.1 Projective imaging of a 3D world; 3.1.2 Projective moment invariants 3.1.3 Affine transformation3.1.4 AMIs; 3.2 AMIs derived from the Fundamental theorem; 3.3 AMIs generated by graphs; 3.3.1 The basic concept; 3.3.2 Representing the invariants by graphs; 3.3.3 Independence of the AMIs; 3.3.4 The AMIs and tensors; 3.3.5 Robustness of the AMIs; 3.4 AMIs via image normalization; 3.4.1 Decomposition of the affine transform; 3.4.2 Violation of stability; 3.4.3 Relation between the normalized moments and the AMIs; 3.4.4 Affine invariants via half normalization; 3.4.5 Affine invariants from complex moments; 3.5 Derivation of the AMIs from the Cayley-Aronhold equation 3.5.1 Manual solution3.5.2 Automatic solution; 3.6 Numerical experiments; 3.6.1 Digit recognition; 3.6.2 Recognition of symmetric patterns; 3.6.3 The children's mosaic; 3.7 Affine invariants of color images; 3.8 Generalization to three dimensions; 3.8.1 Method of geometric primitives; 3.8.2 Normalized moments in 3D; 3.8.3 Half normalization in 3D; 3.8.4 Direct solution of the Cayley-Aronhold equation; 3.9 Conclusion; Appendix; References; 4 Implicit invariants to elastic transformations; 4.1 Introduction; 4.2 General moments under a polynomial transform; 4.3 Explicit and implicit invariants 4.4 Implicit invariants as a minimization task4.5 Numerical experiments; 4.5.1 Invariance and robustness test; 4.5.2 ALOI classification experiment; 4.5.3 Character recognition on a bottle; 4.6 Conclusion; References; 5 Invariants to convolution; 5.1 Introduction; 5.2 Blur invariants for centrosymmetric PSFs; 5.2.1 Template matching experiment; 5.2.2 Invariants to linear motion blur; 5.2.3 Extension to n dimensions; 5.2.4 Possible applications and limitations; 5.3 Blur invariants for N-fold symmetric PSFs; 5.3.1 Blur invariants for circularly symmetric PSFs 5.3.2 Blur invariants for Gaussian PSFs |
Record Nr. | UNINA-9910139968003321 |
Flusser Jan | ||
Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : J. Wiley, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Moments and moment invariants in pattern recognition / / Jan Flusser, Tomas Suk, Barbara Zitov |
Autore | Flusser Jan |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : J. Wiley, 2009 |
Descrizione fisica | 1 online resource (314 p.) |
Disciplina | 515/.42 |
Altri autori (Persone) |
SukTomas
ZitovaBarbara |
Soggetto topico |
Optical pattern recognition - Mathematics
Moment problems (Mathematics) Invariants |
ISBN |
1-282-38033-8
9786612380334 0-470-68475-5 0-470-68476-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Authors' biographies; Preface; Acknowledgments; 1 Introduction to moments; 1.1 Motivation; 1.2 What are invariants?; 1.2.1 Categories of invariant; 1.3 What are moments?; 1.3.1 Geometric and complex moments; 1.3.2 Orthogonal moments; 1.4 Outline of the book; References; 2 Moment invariants to translation, rotation and scaling; 2.1 Introduction; 2.1.1 Invariants to translation; 2.1.2 Invariants to uniform scaling; 2.1.3 Traditional invariants to rotation; 2.2 Rotation invariants from complex moments; 2.2.1 Construction of rotation invariants; 2.2.2 Construction of the basis
2.2.3 Basis of invariants of the second and third orders2.2.4 Relationship to the Hu invariants; 2.3 Pseudoinvariants; 2.4 Combined invariants to TRS and contrast changes; 2.5 Rotation invariants for recognition of symmetric objects; 2.5.1 Logo recognition; 2.5.2 Recognition of simple shapes; 2.5.3 Experiment with a baby toy; 2.6 Rotation invariants via image normalization; 2.7 Invariants to nonuniform scaling; 2.8 TRS invariants in 3D; 2.9 Conclusion; References; 3 Affine moment invariants; 3.1 Introduction; 3.1.1 Projective imaging of a 3D world; 3.1.2 Projective moment invariants 3.1.3 Affine transformation3.1.4 AMIs; 3.2 AMIs derived from the Fundamental theorem; 3.3 AMIs generated by graphs; 3.3.1 The basic concept; 3.3.2 Representing the invariants by graphs; 3.3.3 Independence of the AMIs; 3.3.4 The AMIs and tensors; 3.3.5 Robustness of the AMIs; 3.4 AMIs via image normalization; 3.4.1 Decomposition of the affine transform; 3.4.2 Violation of stability; 3.4.3 Relation between the normalized moments and the AMIs; 3.4.4 Affine invariants via half normalization; 3.4.5 Affine invariants from complex moments; 3.5 Derivation of the AMIs from the Cayley-Aronhold equation 3.5.1 Manual solution3.5.2 Automatic solution; 3.6 Numerical experiments; 3.6.1 Digit recognition; 3.6.2 Recognition of symmetric patterns; 3.6.3 The children's mosaic; 3.7 Affine invariants of color images; 3.8 Generalization to three dimensions; 3.8.1 Method of geometric primitives; 3.8.2 Normalized moments in 3D; 3.8.3 Half normalization in 3D; 3.8.4 Direct solution of the Cayley-Aronhold equation; 3.9 Conclusion; Appendix; References; 4 Implicit invariants to elastic transformations; 4.1 Introduction; 4.2 General moments under a polynomial transform; 4.3 Explicit and implicit invariants 4.4 Implicit invariants as a minimization task4.5 Numerical experiments; 4.5.1 Invariance and robustness test; 4.5.2 ALOI classification experiment; 4.5.3 Character recognition on a bottle; 4.6 Conclusion; References; 5 Invariants to convolution; 5.1 Introduction; 5.2 Blur invariants for centrosymmetric PSFs; 5.2.1 Template matching experiment; 5.2.2 Invariants to linear motion blur; 5.2.3 Extension to n dimensions; 5.2.4 Possible applications and limitations; 5.3 Blur invariants for N-fold symmetric PSFs; 5.3.1 Blur invariants for circularly symmetric PSFs 5.3.2 Blur invariants for Gaussian PSFs |
Record Nr. | UNINA-9910816990103321 |
Flusser Jan | ||
Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : J. Wiley, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|