Vai al contenuto principale della pagina
| Autore: |
Fichera Gaetano <1922-1996, >
|
| Titolo: |
Linear elliptic differential systems and eigenvalue problems / / Gaetano Fichera
|
| Pubblicazione: | Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1965] |
| ©1965 | |
| Edizione: | 1st ed. 1965. |
| Descrizione fisica: | 1 online resource (IV, 177 p.) |
| Disciplina: | 517.383 |
| Soggetto topico: | Boundary value problems |
| Differential equations, Elliptic | |
| Differential equations, Linear | |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di contenuto: | “Well posed” boundary value problems -- Existence principle -- The function spaces and Hm -- The trace operator. Sobolev and Ehrling lemmas -- Elliptic linear systems. Interior regularity -- Existence of local solutions for elliptic systems -- Semiweak solutions of BVP for elliptic systems -- Regularity at the boundary: preliminary lemmas -- Regularity at the boundary: tangential derivatives -- Regularity at the boundary: final results -- The classical elliptic BVP of Mathematical physics: 2nd order linear PDE. -- The classical elliptic BVP of Mathematical Physics: Linear Elastostatics -- The classical elliptic BVP of Mathematical Physics: Equilibrium of thin plates -- Strongly elliptic operators. G»rding inequality. Eigenvalue problems -- Eigenvalue problems. The Rayleigh-Ritz method -- The Weinstein—Aronszajn method -- Construction of the intermediate operators -- Orthogonal invariants of positive compact operators -- Upper approximation of the eigenvalues of a PCO. Representation of orthogonal invariants -- Explicit construction of the Green's matrix for an elliptic system -- Erratum. |
| Titolo autorizzato: | Linear elliptic differential systems and eigenvalue problems ![]() |
| ISBN: | 3-540-37134-6 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 996466765303316 |
| Lo trovi qui: | Univ. di Salerno |
| Opac: | Controlla la disponibilità qui |