Handbook of Agricultural Biotechnology, Volume 5 : Nanobiofertilizers |
Autore | Adetunji Charles Oluwaseun |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (595 pages) |
Altri autori (Persone) |
EgbunaChukwuebuka
FicaiAnton IjabadeniyiOluwatosin Ademola |
Collana | Handbook of Agricultural Bionanobiotechnology Series |
ISBN |
1-394-21154-6
1-394-21152-X 1-394-21153-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Application of Nanobiofertilization for Bioremediation and Ecorestoration of Polluted Soil/Farmland -- 1.1 Introduction -- 1.2 Nanoparticles -- 1.2.1 Nanoparticles as Nano-Adsorbents -- 1.2.2 Nanobiofertilizers -- 1.2.3 Biosynthesis of Nanoparticles -- 1.2.4 Microbe-Mediated Synthesis -- 1.2.5 Plant-Mediated Synthesis -- 1.3 Nanobiofertilization in Bioremediation -- 1.3.1 Mechanism of NPs-Microbes Interaction in Pollutant Bioremediation -- 1.3.2 Plant and Nanoparticle-Based Interaction Mechanism in Pollutant Bioremediation -- 1.4 Application of Nanobiofertilization in Bioremediation -- 1.4.1 Heavy Metals Removal -- 1.4.2 Removal of Hydrocarbon -- 1.4.3 Removal of Colored Dyes -- 1.4.4 Removal of Antiseptics and Antibiotics -- 1.4.5 Nano-Phytoremediation of Polluted Soils -- 1.4.6 Removal of Organic Pollutants -- 1.4.7 Removal of Heavy Metal -- 1.5 Environmental Distress -- 1.6 Conclusion -- References -- Chapter 2 Influence of Nanobiofertilizer on Plant Yield and Growth -- 2.1 Introduction -- Nanobiofertilizer -- Composition of Nanobiofertilizer -- Mechanisms of Nutrient Delivery and Enhanced Bioavailability -- Seed Priming (Nanopriming) -- Soil-Based Application -- Nanobiofertilizer Plant System Interaction -- Impact of Nanobiofertilizer on Plant Biomass -- Factors Contributing to Enhanced Plant Growth -- Comparison of Biomass Enhancement with Traditional Fertilizers -- Nanobiofertilizer-Induced Biomass and Chlorophyll Content Enhancement -- Crop-Specific Responses to Nanobiofertilizers -- Case Studies Highlighting Positive Outcomes on Various Crops -- Environmental and Economic Considerations on the Use of Nanobiofertilizers -- Comparison of Nanobiofertilizers with Traditional Fertilizers in Terms of Cost and Effectiveness.
Potential Long-Term Benefits for Soil Health and Ecosystem -- Addressing Concerns Related to Nanoparticle Toxicity and Accumulation -- Need for Standardized Testing Protocols and Safety Assessments -- Exploration of Innovative Nanobiofertilizer Formulations and Delivery Methods -- Strategies for Incorporating Nanobiofertilizers into Existing Farming Systems -- Synergistic Effects of Combining Nanobiofertilizers with Other Sustainable Practices -- Practical Considerations for Large-Scale Implementation -- Potential to Revolutionize Agriculture and Contribute to Food Security -- Call to Action for Continued Research, Development, and Adoption of Nanobiofertilizers -- Conclusion -- References -- Chapter 3 Effect of Bionanofertilizer on Proximate Composition of Crops -- 3.1 Introduction -- 3.2 Biological Synthesis of Nanofertilizers -- 3.2.1 Bacterial-Based Nanosynthesis -- 3.2.2 Fungal-Based Nanosynthesis -- 3.2.3 Algal-Based Nanosynthesis -- 3.2.4 Plant-Based Nanosynthesis -- 3.3 Composition of Bionanofertilizers -- 3.3.1 Macronutrient Bionanofertilizer -- 3.3.2 Micronutrient Bionanofertilizer -- 3.3.3 Hybrid Bionanofertilizers -- 3.4 Properties of Bionanofertilizers -- 3.4.1 Efficient Nutrient Release and Use -- 3.4.2 Maintenance of Equilibrium Between Nutrient Demand and Nutrient Supply -- 3.4.3 Enhancement of Soil Heterogeneity and Reduction of Environmental Pollution -- 3.4.4 Improvement of Soil Water Retention Capacity -- 3.5 Effect of Bionanofertilizers of Proximate Parameters of Crops -- 3.6 Conclusion and Future Direction -- References -- Chapter 4 The Role of Policy Maker, Relevant Stakeholders and Government Agency in Translating Nanobiofertilizer Research into Policy -- 4.1 Introduction -- 4.2 Views of the Dangers of Nanotechnology and Confidence in Stakeholders -- 4.3 Policy Making Process. 4.4 Benefits of Agencies in the Nanoproduction of Fertilizer -- 4.5 Relevant Stakeholders in the Implementation of Policy -- 4.6 Report of Nanobiofertilizers Worldwide -- 4.7 Government Agencies and Their Impact -- 4.8 Translating Research Into Policy -- 4.9 Global Safety and Legal Framework for Agricultural Goods Based on Nanotechnology -- 4.10 Future Initiatives and Studies to Support the Development of Nanobiofertilizers -- Conclusion -- References -- Chapter 5 Structural Elucidation, Detection, and Characterization of Essential Nutrients Necessary for Soil Fertilization -- 5.1 Introduction -- 5.1.1 Importance of Soil Fertility in Agriculture -- 5.1.2 Role of Essential Nutrients in Soil Fertilization -- 5.2 Nitrogen (N) in Soil Fertilization -- 5.2.1 Significance of Nitrogen for Plant Growth -- 5.2.2 Structural Elucidation of Nitrogen Compounds -- 5.3 Phosphorus (P) in Soil Fertilization -- 5.3.1 Importance of Phosphorus in Plant Growth -- 5.3.2 Structural Elucidation of Phosphorus Compounds -- 5.4 Potassium (K) in Soil Fertilization -- 5.4.1 Role of Potassium in Plant Nutrition -- 5.4.2 Characterization of Potassium in Soils -- 5.5 Optimization of Nutrient Management Strategies -- 5.5.1 Integration of Nutrient Detection and Characterization Data -- 5.5.2 Targeted and Efficient Fertilization Approaches -- Conclusion -- References -- Chapter 6 Effect of Nanobiofertilizer on Phytochemicals -- 6.1 General Overview on Nanobiofertilizer -- 6.2 Constituents of Nanobiofertilizer -- 6.2.1 Nanoparticles -- 6.2.1.1 Zinc Nanoparticles or ZnNPs -- 6.2.1.2 Silver Nanoparticles or AgNPS -- 6.2.1.3 Silicon Nanoparticles or SiNPs -- 6.2.1.4 Copper Nanoparticles or CuNPs -- 6.2.2 Biofertilizer -- 6.2.3 Preparation of Nanobiofertilizer -- 6.2 Concept of Nanobiofertilizers and Their Potential as a Sustainable Alternative to Conventional Fertilizers. 6.3 Importance of Phytochemicals in Plant Growth and Human Health -- 6.3.1 Phytochemical Research -- 6.4 Mechanisms of Nanobiofertilizer on Phytochemicals -- 6.4.1 Mechanism of Action of NFs -- 6.4.2 Mode of Application of NFs -- 6.4.3 Roots -- 6.5 Recent Studies on Effect of Nanobiofertilizer on Phytochemicals -- 6.6 Conclusion and Future Trends on Nanobiofertilizer on Phytochemicals -- References -- Chapter 7 Characterization of Nanoparticles Used as Nanobiofertilizers -- 7.1 Introduction -- 7.2 Some Spectroscopic Characterization Technique for Nanomaterials -- 7.2.1 X-Ray Diffraction (XRD) -- 7.2.2 Principle of X-Ray Diffraction (XRD) -- 7.2.3 Ultraviolet-Visible Spectroscopy (UV-vis) -- 7.2.4 Scanning Electron Microscopy (SEM) -- 7.2.5 Zeta Potential Measurements (ZPM) -- 7.2.6 Principle of Zeta Potential Measurements (ZPM) -- 7.2.7 Dital Polarimeter -- 7.2.8 Dynamic Light Scattering (DSL) -- 7.2.8.1 Principle of Dynamic Light Scattering (DSL) -- 7.2.9 Transform Infrared (FTIR) Spectroscopy -- 7.2.9.1 Principle of Transform Infrared (FTIR) Spectroscopy -- 7.3 Characterization of Nanobiofertilizer Through Chemical and Biological Synthesis -- 7.4 Application of Nanobiofertilizer -- 7.5 Environmental Impact Assessment -- 7.6 Future Perspectives and Challenges -- 7.6.1 Future Perspectives -- 7.6.2 Challenges -- 7.7 Conclusion -- References -- Chapter 8 Toxicological Effects of Nanobiofertilizer on Water Body, Water Quality, Lower Plants, Zooplanktons, and Beneficial Microorganisms -- 8.1 Introduction -- 8.2 Effects of Nanofertilizer on Soil Microbial Community -- 8.3 Nanofertilizers Versus Biofertilizers: Dissimilarity in Synthesis -- 8.4 Nanobiofertilizer -- 8.4.1 Toxicological Effects of Nanobiofertilizer on Water Body and Water Quality -- 8.4.2 Effects of Nanobiofertilizer on Lower Plants -- 8.4.3 Effects of Nanobiofertilizer on Zooplanktons. 8.4.4 Toxicological Effects of Nanobiofertilizer on Beneficial Microorganisms -- 8.5 Conclusion -- References -- Chapter 9 Various Techniques Used in the Application of Nanobiofertilizers on Crops After Synthesis -- 9.1 Introduction -- 9.2 Synthesis of Nanoparticles -- 9.2.1 Microbial Synthesis of Nanomaterials -- 9.2.2 Plant-Mediated Synthesis of Nanoparticles -- 9.3 Synthesis of Nanobiofertilizers -- 9.4 Methods Used in the Application of Nanobiofertilizers on Crops -- 9.4.1 Foliar Spraying -- 9.4.2 Seed Nanopriming -- 9.4.3 Soil Treatment -- 9.5 Conclusion -- References -- Chapter 10 Non-Target Effect, Environmental Impact, and Assessment of Nanobiofertilizer -- 10.1 Introduction -- 10.2 Environmental Impact of Nanobiofertilizer on Soil Properties -- 10.3 Non-Targeted Effects on Soil Properties -- 10.3.1 Physicochemical Properties of Soil -- 10.3.2 Biological Properties of Soil -- Soil Carbon and Carbon Sequestration -- Soil Respiration -- Soil Enzymes -- Soil Microorganisms and Microbial Diversity -- 10.4 Recommendation and Conclusion -- References -- Chapter 11 Reported Genes Regulating the Biological Activities in Microorganisms Used in the Formation of Nanobiofertilizers -- 11.1 Introduction -- 11.2 Synthesis of Nanoparticles -- 11.2.1 Biosynthesis of Nanoparticles -- 11.2.2 Microorganisms Used for the Synthesis of Nanobiofertilizers -- 11.3 Genes Regulating the Biological Activities in Plant Growth-Promoting Rhizobacteria -- 11.4 Conclusion -- References -- Chapter 12 Relevance of Molecular Genetics and Synthetic Biology Involved in the Characterization of Microorganisms Used in Nanofertilizer Research -- 12.1 Introduction -- 12.2 Molecular Genetics and Synthetic Biology -- 12.2.1 Molecular Genetics -- 12.2.2 Synthetic Biology -- 12.2.2.1 Synthetic Biology Tools for Engineering Nanobiofertilizer Microorganisms. 12.2.2.2 Case Studies on Use of Synthetic Biology to Enhance Microorganisms for Nanobiofertilizers. |
Record Nr. | UNINA-9910902900303321 |
Adetunji Charles Oluwaseun | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanostructures for antimicrobial therapy / / edited by Anton Ficai, Alexandru Mihai Grumezescu |
Pubbl/distr/stampa | Amsterdam, Netherlands : , : Elsevier, , 2017 |
Descrizione fisica | 1 online resource (697 pages) : illustrations |
Disciplina | 616.90461 |
Collana | Nanostructures in Therapeutic Medicine Series |
Soggetto topico |
Anti-infective agents
Nanostructures |
ISBN | 0-323-46151-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910583473303321 |
Amsterdam, Netherlands : , : Elsevier, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanostructures for cancer therapy / / edited by Anton Ficai, University Politehnica of Bucharest, Bucharest, Romania, Alexandru Mihai Grumezescu, University Politehnica of Bucharest, Bucharest, Romania |
Pubbl/distr/stampa | Amsterdam : , : Elsevier, , [2017] |
Descrizione fisica | 1 online resource (xxxvii, 882 pages) : illustrations (some color) |
Disciplina | 610.28 |
Collana |
Nanostructures in therapeutic medicine series
Gale eBooks |
Soggetto topico |
Nanomedicine
Nanoparticles Cancer - Treatment |
ISBN | 0-323-46150-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ch. 1. Nanotechnology for personalized medicine : cancer research, diagnosis, and therapy -- ch. 2. Bioengineered nanomaterials for chemotherapy -- ch. 3. Biofunctionalized nanomaterials for targeting cancer cells -- ch. 4. Improving chemotherapy drug delivery by nanoprecision tools -- ch. 5. RIPL peptide as a novel cell-penetrating and homing peptide : design, characterization, and application to liposomal nanocarriers for hepsin-specific intracellular drug delivery -- ch. 6. Progress of nanoparticles research in cancer therapy and diagnosis -- ch. 7. Interfacial engineering of nanoparticles for cancer therapeutics -- ch. 8. Nanotechnological approaches toward cancer chemotherapy -- ch. 9. Cancer therapies : applications, nanomedicines and nanotoxicology -- ch. 10. Multifuncational polymeric micelles as therapeutic nanostructures : targeting, imaging, and triggered release -- ch. 11. Recent advances in diagnosis and therapy of skin cancers through nanotechnological approaches -- ch. 12. Design of nanoparticle structures for cancer immunotherapy -- ch. 13. Recent advances of folate-targeted anticancer therapies and diagnostics : current status and future prospectives -- ch. 14. Anticancer efficiency of curcumin-loaded invertible polymer micellar nanoassemblies -- ch. 15. Dose enchancement effect in radiotherapy : adding gold nanoparticles to tumor in cancer treatment -- ch. 16. Silver-based nanostructures for cancer therapy -- ch. 17. Ligand-decorated polysaccharide nanocarriers for targeting therapeutics to hepatocytes -- ch. 18. Targeted delivery of anticancer drugs : new trends in lipid nanocarriers -- ch. 19. Nanoparticles for magnetic hyperthermia -- ch. 20. Nanotechnology : a challenge in hard tissue engineering with emphasis on bone cancer therapy -- ch. 21. Combination therapy of macromolecules and small molecules : approaches, advantages, and limitations -- ch. 22. Nanosized drug delivery systems as radiopharmaceuticals -- ch. 23. Mesoporous silica nanoparticles : a promising multifunctional drug delivery system -- ch. 24. Cancer therapies based on enzymatic amino acid depletion -- ch. 25. Self-emulsifying delivery systems : one step ahead in improving solubility of poorly soluble drugs -- ch. 26. Near-infrared light-responsive nanotherapeutic agents : application in medical oncology -- ch. 27. Current aspects of breast cancer therapy and diagnosis based on a nanocarrier approach -- ch. 28. Natural plant-derived anticancer drugs nanotherapeutics : a review on preclinical to clinical success -- ch. 29. Nanotherapy : a next generation hallmark for combating cancer -- ch. 30. Nanostructures for cancer therapy : from targeting to selective toxicology. |
Record Nr. | UNINA-9910583488303321 |
Amsterdam : , : Elsevier, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|