top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Dissipative optical solitons / / Mário F. S. Ferreira
Dissipative optical solitons / / Mário F. S. Ferreira
Autore Ferreira Mário F. S.
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (369 pages)
Disciplina 621.366
Collana Springer Series in Optical Sciences
Soggetto topico Lasers - Resonators
Solitons - Research
ISBN 3-030-97493-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Contributors -- Chapter 1: Dissipative Optical Solitons: An Introduction -- 1.1 Solitary Waves -- 1.2 Solitons in Optical Fibers -- 1.3 The Complex Ginzburg-Landau Equation -- 1.4 Dissipative Solitons -- 1.5 Dissipative Soliton Molecules -- 1.6 Recent Experimental Results on Pulsating Dissipative Solitons -- References -- Chapter 2: Dissipative Solitons in Passively Mode-Locked Lasers -- 2.1 From Solitons to Dissipative Solitons in Ultrafast Lasers -- 2.1.1 Early Advances Toward Soliton Lasers -- 2.1.2 Reconsidering the Value of Dissipation in Lasers -- 2.2 Signatures of Dissipative Soliton Dynamics -- 2.3 Dissipative Soliton Molecules -- 2.3.1 The Wealth of Soliton Interaction Processes Within a Laser Cavity -- 2.3.2 From Stationary to Pulsating Soliton Molecules -- 2.4 Toward Incoherent Dissipative Solitons -- 2.5 Summary and Prospects -- References -- Chapter 3: Dissipative Soliton Buildup Dynamics -- 3.1 Introduction -- 3.2 Conventional Soliton Buildup Dynamics in an Anomalous Dispersion Fiber Laser -- 3.3 Dissipative Solitons Buildup Dynamics in a Normal Dispersion Fiber Laser -- 3.4 Dissipative Soliton Buildup Dynamics in a Bidirectional Fiber Laser with Net-Normal Dispersion -- 3.5 Buildup Dynamics of Dissipative Soliton Molecules -- 3.6 Conclusion -- References -- Chapter 4: Dissipative Soliton Resonance -- 4.1 Introduction -- 4.1.1 Numerical Approach: Propagation in an Oscillator with a Saturable Absorber (SA) -- 4.1.2 DSR Pulses in Passively Mode-Locked Fiber Lasers -- 4.1.2.1 Experimental Features of DSR Pulses -- 4.1.2.2 Control of Pulse Characteristics in Dual-Amplifier Configuration -- 4.2 Multi-pulsing Instabilities in DSR Regime -- 4.3 Chapter Summary -- References -- Chapter 5: Ultra-Short High-Amplitude Dissipative Solitons -- 5.1 Introduction -- 5.2 The Cubic-Quintic Complex Ginzburg-Landau Equation.
5.3 Soliton Perturbation Theory -- 5.4 Method of Moments -- 5.5 Very-High Amplitude CGLE Solitons -- 5.6 Effects of Dispersion -- 5.7 Impact of Higher-Order Effects -- 5.7.1 Results of the Soliton Perturbation Theory -- 5.7.2 Linear Stability Analysis -- 5.7.3 Numerical Results -- 5.8 Conclusions -- References -- Chapter 6: Vector Dissipative Solitons -- 6.1 Introduction -- 6.2 DS Trapping in Fiber Lasers -- 6.3 Various Forms of VDSs -- 6.3.1 High-Order VDSs -- 6.3.2 Dark-Bright VDSs -- 6.3.3 Vector Soliton Molecules -- 6.3.4 Vector Noise-Like Pulses -- 6.4 Real-Time Dynamics of VDSs -- 6.4.1 Dispersive Fourier Transform Based Polarization Resolved Analysis -- 6.4.2 Real-Time Polarization Dynamics of VDSs -- 6.4.3 Pulsation of VDSs -- 6.5 Conclusions -- References -- Chapter 7: Dynamics of Pulsating Dissipative Solitons -- 7.1 Introduction -- 7.2 Theory of Pulsating Dissipative Solitons -- 7.2.1 Numerical Analysis of Pulsation Dynamics -- 7.2.2 Semi-Analytical Analysis of Pulsation Dynamics -- 7.3 Transient Behaviors of Pulsating Dissipative Solitons -- 7.3.1 Stationary Soliton -- 7.3.2 Single-Period Pulsating Soliton -- 7.3.3 Double-Period Pulsating Soliton -- 7.3.4 Periodic Soliton Explosion -- 7.3.5 Multi-Soliton Synchronous Pulsation -- 7.3.6 Pulsating Soliton Molecule -- 7.3.7 Multi-Soliton Asynchronous Pulsation -- References -- Chapter 8: Raman Dissipative Solitons -- 8.1 Introduction -- 8.2 Principle of Generation -- 8.3 Simulation -- 8.4 Brief Theory -- 8.5 Applications -- References -- Chapter 9: L-Band Wavelength Tunable Dissipative Soliton Fiber Laser -- 9.1 Introduction -- 9.2 Laser Design -- 9.3 Methods of Wavelength Tuning -- 9.3.1 Wavelength Tuning Based on Spectral Birefringence Filter with 45Tilted Fiber Grating -- 9.3.1.1 Laser Setup and Device Characteristics -- 9.3.1.2 Experimental Results and Discussions.
9.3.2 Wavelength Tuning Based on Tunable Filter with Fiber Taper -- 9.3.2.1 Laser Setup and Device Characteristics -- 9.3.2.2 Experimental Results and Discussions -- 9.3.3 Wavelength Tuning Based on Cavity Loss Control with Commercial Mechanical VOA -- 9.3.3.1 Laser Setup and Device Characteristics -- 9.3.3.2 Experimental Results and Discussions -- 9.3.4 Wavelength Tuning Based on Cavity Loss Control with Taper-Type VOA -- 9.3.4.1 Laser Setup and Device Property -- 9.3.4.2 Experimental Results and Discussions -- 9.3.5 Comparison with Different Wavelength Tuning Methods -- 9.4 Conclusion -- References -- Chapter 10: Multiplexed Dissipative Soliton Fiber Lasers -- 10.1 Introduction -- 10.2 Bidirectional Multiplexed Dissipative Soliton Fiber Lasers -- 10.2.1 SESAM -- 10.2.2 CNT -- 10.2.3 Graphene -- 10.2.4 NPR -- 10.2.5 Hybrid -- 10.3 Wavelength Multiplexed Dissipative Soliton Fiber Lasers -- 10.4 Polarization Multiplexed Dissipative Soliton Fiber Lasers -- 10.5 Conclusion and Outlook -- References -- Chapter 11: Multi-soliton Complex in Nonlinear Cavities -- 11.1 Introduction -- 11.2 Multi-soliton Complex in Mode-Locked Fiber Lasers -- 11.2.1 Multi-soliton States in Mode-Locked Lasers and Their Interaction -- 11.2.1.1 Soliton Molecule -- 11.2.1.2 Pulse Bunching and Harmonic Mode-Locking -- 11.2.1.3 Other States -- 11.2.2 Rapid Measurements of Multi-soliton Dynamics in Mode-Locked Fiber Lasers -- 11.2.2.1 Multi-soliton in Spatiotemporal Mode-Locked Fiber Lasers -- 11.3 Mutli-soliton Complex in Microcavities -- 11.3.1 Basic Principle of Coherently Pumped Solitons -- 11.3.2 Multi-soliton States and Their Interactions in Microcavities -- 11.3.2.1 Dispersive Wave Emission in Microcavities -- 11.3.2.2 From Soliton Molecules to Soliton Crystals in Microcavities -- 11.3.2.3 Multi-soliton State Using Advanced Pumping Schemes -- 11.4 Summary and Discussions.
References -- Chapter 12: Dissipative Solitons in Microresonators -- 12.1 Introduction -- 12.2 Modeling -- 12.2.1 Higher-Order Dispersion -- 12.2.2 Raman Effect -- 12.3 Dispersion Engineered Cavity Dynamics -- 12.3.1 Capabilities of Dispersion Engineering -- 12.3.2 Advanced Control of Dissipative Soliton Dynamics -- 12.3.3 Novel Phenomena in Dispersion-Tailored Microring Resonators -- 12.4 Soliton Comb Generation Schemes -- 12.4.1 Frequency Scanning -- 12.4.2 Power Kicking -- 12.4.3 Thermal Tuning -- 12.4.4 Self-Injection Locking and Laser-Based Configurations -- 12.5 Nonlinear Dynamics of DKS -- 12.6 Applications -- References -- Chapter 13: Vector Vortex Solitons and Soliton Control in Vertical-Cavity Surface-Emitting Lasers -- 13.1 Introduction -- 13.2 Mechanism of Bistability in Lasers with Frequency-Selective Feedback -- 13.3 Vector Vortex Solitons -- 13.3.1 What Are Vector Vortex Beams? -- 13.3.2 Experimental Setup -- 13.3.3 Principle Observations -- 13.3.4 Complex Hysteresis Loops -- 13.3.5 Influencing Polarization Selection by Intra-Cavity Waveplates -- 13.3.6 Interpretation -- 13.4 Flip-Flop Operation of Laser Cavity Solitons -- 13.4.1 Soliton Control in Systems with and Without Holding Beams -- 13.4.2 Experimental Setup -- 13.4.3 Experimental Results -- 13.5 Conclusions and Outlook -- References -- Chapter 14: Discrete Solitons of the Ginzburg-Landau Equation -- 14.1 Introduction -- 14.2 The Model and Linear Dispersion Relation -- 14.3 Dissipative Solitons of the DGLE -- 14.4 Saturable Nonlinearity and MI Analysis -- 14.5 Exact Dissipative Discrete Soliton Solutions -- 14.6 Conclusion -- References -- Chapter 15: Noise-Like Pulses in Mode-Locked Fiber Lasers -- 15.1 Introduction -- 15.2 Examples of NLP Lasers -- 15.3 Mechanisms of NLP Formation -- 15.3.1 Effect of Cavity Birefringence.
15.3.2 Soliton Collapse Due to Reverse Saturable Absorption -- 15.3.3 Raman-Driven NLP -- 15.3.4 NLP Formation in Amplifiers -- 15.4 Dynamics, Coherence and Stability of NLP Lasers -- 15.5 Applications of NLP Lasers -- 15.5.1 Metrology -- 15.5.2 Spectroscopy -- 15.5.3 Spectral Broadening and Supercontinuum Generation -- 15.5.4 Optical Coherence Tomography -- 15.5.5 Nonlinear Microscopy -- 15.6 Summary -- References -- Chapter 16: Dissipative Rogue Waves -- 16.1 Introduction -- 16.1.1 Rogue Waves in the Oceans -- 16.1.2 Introduction of Optical Rogue Waves -- 16.1.3 Real-Time Techniques for Observing Optical Rogue Waves -- 16.1.3.1 Dispersive-Fourier-Transform-Based Ultrafast Spectroscopy -- 16.1.3.2 Time Magnifier -- 16.2 Dissipative Rogue Waves -- 16.2.1 Rogue Waves in Dissipative Systems -- 16.2.2 Dissipative Rogue Waves in Ultrafast Lasers -- 16.2.3 Dissipative Rogue Waves in Microresonators -- 16.2.4 Dissipative Rogue Waves in Extended Systems -- 16.2.5 Optical Polarization Rogue Waves -- 16.3 Generating Mechanisms of Dissipative Rogue Waves -- 16.3.1 Two Interpretations -- 16.3.2 Are the Dissipative Rogue Waves Predictable? -- References.
Record Nr. UNISA-996490349603316
Ferreira Mário F. S.  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Dissipative optical solitons / / Mário F. S. Ferreira
Dissipative optical solitons / / Mário F. S. Ferreira
Autore Ferreira Mário F. S.
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (369 pages)
Disciplina 621.366
Collana Springer Series in Optical Sciences
Soggetto topico Lasers - Resonators
Solitons - Research
ISBN 3-030-97493-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Contributors -- Chapter 1: Dissipative Optical Solitons: An Introduction -- 1.1 Solitary Waves -- 1.2 Solitons in Optical Fibers -- 1.3 The Complex Ginzburg-Landau Equation -- 1.4 Dissipative Solitons -- 1.5 Dissipative Soliton Molecules -- 1.6 Recent Experimental Results on Pulsating Dissipative Solitons -- References -- Chapter 2: Dissipative Solitons in Passively Mode-Locked Lasers -- 2.1 From Solitons to Dissipative Solitons in Ultrafast Lasers -- 2.1.1 Early Advances Toward Soliton Lasers -- 2.1.2 Reconsidering the Value of Dissipation in Lasers -- 2.2 Signatures of Dissipative Soliton Dynamics -- 2.3 Dissipative Soliton Molecules -- 2.3.1 The Wealth of Soliton Interaction Processes Within a Laser Cavity -- 2.3.2 From Stationary to Pulsating Soliton Molecules -- 2.4 Toward Incoherent Dissipative Solitons -- 2.5 Summary and Prospects -- References -- Chapter 3: Dissipative Soliton Buildup Dynamics -- 3.1 Introduction -- 3.2 Conventional Soliton Buildup Dynamics in an Anomalous Dispersion Fiber Laser -- 3.3 Dissipative Solitons Buildup Dynamics in a Normal Dispersion Fiber Laser -- 3.4 Dissipative Soliton Buildup Dynamics in a Bidirectional Fiber Laser with Net-Normal Dispersion -- 3.5 Buildup Dynamics of Dissipative Soliton Molecules -- 3.6 Conclusion -- References -- Chapter 4: Dissipative Soliton Resonance -- 4.1 Introduction -- 4.1.1 Numerical Approach: Propagation in an Oscillator with a Saturable Absorber (SA) -- 4.1.2 DSR Pulses in Passively Mode-Locked Fiber Lasers -- 4.1.2.1 Experimental Features of DSR Pulses -- 4.1.2.2 Control of Pulse Characteristics in Dual-Amplifier Configuration -- 4.2 Multi-pulsing Instabilities in DSR Regime -- 4.3 Chapter Summary -- References -- Chapter 5: Ultra-Short High-Amplitude Dissipative Solitons -- 5.1 Introduction -- 5.2 The Cubic-Quintic Complex Ginzburg-Landau Equation.
5.3 Soliton Perturbation Theory -- 5.4 Method of Moments -- 5.5 Very-High Amplitude CGLE Solitons -- 5.6 Effects of Dispersion -- 5.7 Impact of Higher-Order Effects -- 5.7.1 Results of the Soliton Perturbation Theory -- 5.7.2 Linear Stability Analysis -- 5.7.3 Numerical Results -- 5.8 Conclusions -- References -- Chapter 6: Vector Dissipative Solitons -- 6.1 Introduction -- 6.2 DS Trapping in Fiber Lasers -- 6.3 Various Forms of VDSs -- 6.3.1 High-Order VDSs -- 6.3.2 Dark-Bright VDSs -- 6.3.3 Vector Soliton Molecules -- 6.3.4 Vector Noise-Like Pulses -- 6.4 Real-Time Dynamics of VDSs -- 6.4.1 Dispersive Fourier Transform Based Polarization Resolved Analysis -- 6.4.2 Real-Time Polarization Dynamics of VDSs -- 6.4.3 Pulsation of VDSs -- 6.5 Conclusions -- References -- Chapter 7: Dynamics of Pulsating Dissipative Solitons -- 7.1 Introduction -- 7.2 Theory of Pulsating Dissipative Solitons -- 7.2.1 Numerical Analysis of Pulsation Dynamics -- 7.2.2 Semi-Analytical Analysis of Pulsation Dynamics -- 7.3 Transient Behaviors of Pulsating Dissipative Solitons -- 7.3.1 Stationary Soliton -- 7.3.2 Single-Period Pulsating Soliton -- 7.3.3 Double-Period Pulsating Soliton -- 7.3.4 Periodic Soliton Explosion -- 7.3.5 Multi-Soliton Synchronous Pulsation -- 7.3.6 Pulsating Soliton Molecule -- 7.3.7 Multi-Soliton Asynchronous Pulsation -- References -- Chapter 8: Raman Dissipative Solitons -- 8.1 Introduction -- 8.2 Principle of Generation -- 8.3 Simulation -- 8.4 Brief Theory -- 8.5 Applications -- References -- Chapter 9: L-Band Wavelength Tunable Dissipative Soliton Fiber Laser -- 9.1 Introduction -- 9.2 Laser Design -- 9.3 Methods of Wavelength Tuning -- 9.3.1 Wavelength Tuning Based on Spectral Birefringence Filter with 45Tilted Fiber Grating -- 9.3.1.1 Laser Setup and Device Characteristics -- 9.3.1.2 Experimental Results and Discussions.
9.3.2 Wavelength Tuning Based on Tunable Filter with Fiber Taper -- 9.3.2.1 Laser Setup and Device Characteristics -- 9.3.2.2 Experimental Results and Discussions -- 9.3.3 Wavelength Tuning Based on Cavity Loss Control with Commercial Mechanical VOA -- 9.3.3.1 Laser Setup and Device Characteristics -- 9.3.3.2 Experimental Results and Discussions -- 9.3.4 Wavelength Tuning Based on Cavity Loss Control with Taper-Type VOA -- 9.3.4.1 Laser Setup and Device Property -- 9.3.4.2 Experimental Results and Discussions -- 9.3.5 Comparison with Different Wavelength Tuning Methods -- 9.4 Conclusion -- References -- Chapter 10: Multiplexed Dissipative Soliton Fiber Lasers -- 10.1 Introduction -- 10.2 Bidirectional Multiplexed Dissipative Soliton Fiber Lasers -- 10.2.1 SESAM -- 10.2.2 CNT -- 10.2.3 Graphene -- 10.2.4 NPR -- 10.2.5 Hybrid -- 10.3 Wavelength Multiplexed Dissipative Soliton Fiber Lasers -- 10.4 Polarization Multiplexed Dissipative Soliton Fiber Lasers -- 10.5 Conclusion and Outlook -- References -- Chapter 11: Multi-soliton Complex in Nonlinear Cavities -- 11.1 Introduction -- 11.2 Multi-soliton Complex in Mode-Locked Fiber Lasers -- 11.2.1 Multi-soliton States in Mode-Locked Lasers and Their Interaction -- 11.2.1.1 Soliton Molecule -- 11.2.1.2 Pulse Bunching and Harmonic Mode-Locking -- 11.2.1.3 Other States -- 11.2.2 Rapid Measurements of Multi-soliton Dynamics in Mode-Locked Fiber Lasers -- 11.2.2.1 Multi-soliton in Spatiotemporal Mode-Locked Fiber Lasers -- 11.3 Mutli-soliton Complex in Microcavities -- 11.3.1 Basic Principle of Coherently Pumped Solitons -- 11.3.2 Multi-soliton States and Their Interactions in Microcavities -- 11.3.2.1 Dispersive Wave Emission in Microcavities -- 11.3.2.2 From Soliton Molecules to Soliton Crystals in Microcavities -- 11.3.2.3 Multi-soliton State Using Advanced Pumping Schemes -- 11.4 Summary and Discussions.
References -- Chapter 12: Dissipative Solitons in Microresonators -- 12.1 Introduction -- 12.2 Modeling -- 12.2.1 Higher-Order Dispersion -- 12.2.2 Raman Effect -- 12.3 Dispersion Engineered Cavity Dynamics -- 12.3.1 Capabilities of Dispersion Engineering -- 12.3.2 Advanced Control of Dissipative Soliton Dynamics -- 12.3.3 Novel Phenomena in Dispersion-Tailored Microring Resonators -- 12.4 Soliton Comb Generation Schemes -- 12.4.1 Frequency Scanning -- 12.4.2 Power Kicking -- 12.4.3 Thermal Tuning -- 12.4.4 Self-Injection Locking and Laser-Based Configurations -- 12.5 Nonlinear Dynamics of DKS -- 12.6 Applications -- References -- Chapter 13: Vector Vortex Solitons and Soliton Control in Vertical-Cavity Surface-Emitting Lasers -- 13.1 Introduction -- 13.2 Mechanism of Bistability in Lasers with Frequency-Selective Feedback -- 13.3 Vector Vortex Solitons -- 13.3.1 What Are Vector Vortex Beams? -- 13.3.2 Experimental Setup -- 13.3.3 Principle Observations -- 13.3.4 Complex Hysteresis Loops -- 13.3.5 Influencing Polarization Selection by Intra-Cavity Waveplates -- 13.3.6 Interpretation -- 13.4 Flip-Flop Operation of Laser Cavity Solitons -- 13.4.1 Soliton Control in Systems with and Without Holding Beams -- 13.4.2 Experimental Setup -- 13.4.3 Experimental Results -- 13.5 Conclusions and Outlook -- References -- Chapter 14: Discrete Solitons of the Ginzburg-Landau Equation -- 14.1 Introduction -- 14.2 The Model and Linear Dispersion Relation -- 14.3 Dissipative Solitons of the DGLE -- 14.4 Saturable Nonlinearity and MI Analysis -- 14.5 Exact Dissipative Discrete Soliton Solutions -- 14.6 Conclusion -- References -- Chapter 15: Noise-Like Pulses in Mode-Locked Fiber Lasers -- 15.1 Introduction -- 15.2 Examples of NLP Lasers -- 15.3 Mechanisms of NLP Formation -- 15.3.1 Effect of Cavity Birefringence.
15.3.2 Soliton Collapse Due to Reverse Saturable Absorption -- 15.3.3 Raman-Driven NLP -- 15.3.4 NLP Formation in Amplifiers -- 15.4 Dynamics, Coherence and Stability of NLP Lasers -- 15.5 Applications of NLP Lasers -- 15.5.1 Metrology -- 15.5.2 Spectroscopy -- 15.5.3 Spectral Broadening and Supercontinuum Generation -- 15.5.4 Optical Coherence Tomography -- 15.5.5 Nonlinear Microscopy -- 15.6 Summary -- References -- Chapter 16: Dissipative Rogue Waves -- 16.1 Introduction -- 16.1.1 Rogue Waves in the Oceans -- 16.1.2 Introduction of Optical Rogue Waves -- 16.1.3 Real-Time Techniques for Observing Optical Rogue Waves -- 16.1.3.1 Dispersive-Fourier-Transform-Based Ultrafast Spectroscopy -- 16.1.3.2 Time Magnifier -- 16.2 Dissipative Rogue Waves -- 16.2.1 Rogue Waves in Dissipative Systems -- 16.2.2 Dissipative Rogue Waves in Ultrafast Lasers -- 16.2.3 Dissipative Rogue Waves in Microresonators -- 16.2.4 Dissipative Rogue Waves in Extended Systems -- 16.2.5 Optical Polarization Rogue Waves -- 16.3 Generating Mechanisms of Dissipative Rogue Waves -- 16.3.1 Two Interpretations -- 16.3.2 Are the Dissipative Rogue Waves Predictable? -- References.
Record Nr. UNINA-9910595026003321
Ferreira Mário F. S.  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear effects in optical fibers / / Mário F.S. Ferreira
Nonlinear effects in optical fibers / / Mário F.S. Ferreira
Autore Ferreira Mário F. S.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , c2011
Descrizione fisica 1 online resource (388 p.)
Disciplina 621.36/92
621.3692
Collana Wiley-osa series on optical communication
Soggetto topico Fiber optics
Nonlinear optics
ISBN 1-283-13879-4
9786613138798
1-118-00338-1
1-118-00337-3
1-118-00339-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1 Introduction -- References. -- 2 Electromagnetic Wave Propagation -- 2.1 Wave Equation for Linear Media -- 2.2 Electromagnetic Waves -- 2.3 Energy Density and Flow -- 2.4 Phase Velocity and Group Velocity -- 2.5 Reflection and Transmission of Waves -- 2.6 The Harmonic Oscillator Model -- 2.7 The Refractive Index -- 2.8 The Limit of Geometrical Optics -- Problems -- References -- 3 Optical Fibers -- 3.1 Geometric Optics Description -- 3.2 Wave Propagation in Fibers -- 3.3 Fiber Attenuation -- 3.4 Modulation and Transfer of Information -- 3.5 Chromatic Dispersion in Single-Mode Fibers -- 3.6 Polarization-Mode Dispersion -- Problems -- References -- 4 The Nonlinear Schrodinger Equation -- 4.1 The Nonlinear Polarization -- 4.2 The Nonlinear Refractive Index -- 4.3 Importance of Nonlinear Effects in Fibers -- 4.4 Derivation of the Nonlinear Schrodinger Equation -- 4.5 Soliton Solutions -- 4.6 Numerical Solution of the NLSE -- Problems -- References -- 5. Nonlinear Phase Modulation -- 5.1 Self-Phase Modulation -- 5.2 Cross-Phase Modulation -- Problems -- References -- 6. Four-Wave Mixing -- 6.1 Wave Mixing -- 6.2 Mathematical Description -- 6.3 Phase Matching -- 6.4 Impact and Control of FWM -- 6.5 Fiber Parametric Amplifiers -- 6.6 Parametric Oscillators -- 6.7 Nonlinear Phase Conjugation with FWM -- 6.8 Squeezing and Photo-Pair Sources -- Problems -- References -- 7 Intrachannel Nonlinear Effects -- 7.1 Mathematical Description -- 7.2 Intrachannel XPM -- 7.3 Intrachannel FWM -- 7.4 Control of Intrachannels Nonlinear Effects -- Problems -- References -- 8 Soliton Lightwave Systems -- 8.1 Soliton Properties -- 8.2 Perturbation of Solitons -- 8.3 Path-Averaged Solitons -- 8.4 Soliton Transmission Control -- 8.5 Dissipative Solitons -- 8.6 Dispension-Managed Solitons -- 8.7 WDM Soliton Systems -- Problems -- References -- 9 Other Applications of Optical Solitons -- 9.1 Soliton Fiber Lasers -- 9.2 Pulse Compression -- 9.3 Fibers Bragg Gratings -- Problems -- References.
10 Polarization Effects -- 10.1 Coupled Nonlinear Schrodinger Equations -- 10.2 Nonlinear Phase Shift -- 10.3 Solitons in Fibers with Constant Birefringence -- 10.4 Solitons in Fibers with Randomly Varying Birefringence -- 10.5 PMD-Induced Soliton Pulse Broadening -- 10.6 Dispersion-Managed Solitons and PMD -- Problems -- References -- 11 Stimulated Raman Scattering -- 11.1 Raman Scattering in the Harmonic Oscillator Model -- 11.2 Raman Gain -- 11.3 Raman Threshold -- 11.4 Impact of Raman Scattering on Communication Systems -- 11.5 Raman Amplification -- 11.6 Raman Fiber Lasers -- Problems -- References -- 12 Stimulated Brillouin Scattering -- 12.1 Light Scattering at Acoustic Waves -- 12.2 The Coupled Equations for Stimulated Brillouin Scattering -- 12.3 Brillouin Gain and Bandwidth -- 12.4 Threshold of Stimulated Brillouin Scattering -- 12.5 SBS in Active Fibers -- 12.6 Impact of SBS on Communication Systems -- 12.7 Fiber Brillouin Amplifiers -- 12.8 SBS Slow Light -- 12.9 Fiber Brillouin Lasers -- Problems -- References -- 13 Highly Nonlinear and Microstructured Fibers -- 13.1 The Nonlinear Parameter in Silica Fibers -- 13.2 Microstructured Fibers -- 13.3 Non-Silica Fibers -- 13.4 Soliton Self-Frequency Shift -- 13.5 Four-Wave Mixing -- 13.6 Supercontinuum Generation -- Problems -- References -- 14 Optical Signal Processing -- 14.1 Nonlinear Sources for WDM Systems -- 14.2 Optical Regeneration -- 14.3 Optical Pulse Train Generation. -- 14.4 Wavelength Conversion -- 14.5 All-Optical Switching -- Problems -- References -- Index.
Record Nr. UNINA-9910130875803321
Ferreira Mário F. S.  
Hoboken, New Jersey : , : Wiley, , c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear effects in optical fibers / / Mário F.S. Ferreira
Nonlinear effects in optical fibers / / Mário F.S. Ferreira
Autore Ferreira Mário F. S.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , c2011
Descrizione fisica 1 online resource (388 p.)
Disciplina 621.36/92
621.3692
Collana Wiley-osa series on optical communication
Soggetto topico Fiber optics
Nonlinear optics
ISBN 1-283-13879-4
9786613138798
1-118-00338-1
1-118-00337-3
1-118-00339-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1 Introduction -- References. -- 2 Electromagnetic Wave Propagation -- 2.1 Wave Equation for Linear Media -- 2.2 Electromagnetic Waves -- 2.3 Energy Density and Flow -- 2.4 Phase Velocity and Group Velocity -- 2.5 Reflection and Transmission of Waves -- 2.6 The Harmonic Oscillator Model -- 2.7 The Refractive Index -- 2.8 The Limit of Geometrical Optics -- Problems -- References -- 3 Optical Fibers -- 3.1 Geometric Optics Description -- 3.2 Wave Propagation in Fibers -- 3.3 Fiber Attenuation -- 3.4 Modulation and Transfer of Information -- 3.5 Chromatic Dispersion in Single-Mode Fibers -- 3.6 Polarization-Mode Dispersion -- Problems -- References -- 4 The Nonlinear Schrodinger Equation -- 4.1 The Nonlinear Polarization -- 4.2 The Nonlinear Refractive Index -- 4.3 Importance of Nonlinear Effects in Fibers -- 4.4 Derivation of the Nonlinear Schrodinger Equation -- 4.5 Soliton Solutions -- 4.6 Numerical Solution of the NLSE -- Problems -- References -- 5. Nonlinear Phase Modulation -- 5.1 Self-Phase Modulation -- 5.2 Cross-Phase Modulation -- Problems -- References -- 6. Four-Wave Mixing -- 6.1 Wave Mixing -- 6.2 Mathematical Description -- 6.3 Phase Matching -- 6.4 Impact and Control of FWM -- 6.5 Fiber Parametric Amplifiers -- 6.6 Parametric Oscillators -- 6.7 Nonlinear Phase Conjugation with FWM -- 6.8 Squeezing and Photo-Pair Sources -- Problems -- References -- 7 Intrachannel Nonlinear Effects -- 7.1 Mathematical Description -- 7.2 Intrachannel XPM -- 7.3 Intrachannel FWM -- 7.4 Control of Intrachannels Nonlinear Effects -- Problems -- References -- 8 Soliton Lightwave Systems -- 8.1 Soliton Properties -- 8.2 Perturbation of Solitons -- 8.3 Path-Averaged Solitons -- 8.4 Soliton Transmission Control -- 8.5 Dissipative Solitons -- 8.6 Dispension-Managed Solitons -- 8.7 WDM Soliton Systems -- Problems -- References -- 9 Other Applications of Optical Solitons -- 9.1 Soliton Fiber Lasers -- 9.2 Pulse Compression -- 9.3 Fibers Bragg Gratings -- Problems -- References.
10 Polarization Effects -- 10.1 Coupled Nonlinear Schrodinger Equations -- 10.2 Nonlinear Phase Shift -- 10.3 Solitons in Fibers with Constant Birefringence -- 10.4 Solitons in Fibers with Randomly Varying Birefringence -- 10.5 PMD-Induced Soliton Pulse Broadening -- 10.6 Dispersion-Managed Solitons and PMD -- Problems -- References -- 11 Stimulated Raman Scattering -- 11.1 Raman Scattering in the Harmonic Oscillator Model -- 11.2 Raman Gain -- 11.3 Raman Threshold -- 11.4 Impact of Raman Scattering on Communication Systems -- 11.5 Raman Amplification -- 11.6 Raman Fiber Lasers -- Problems -- References -- 12 Stimulated Brillouin Scattering -- 12.1 Light Scattering at Acoustic Waves -- 12.2 The Coupled Equations for Stimulated Brillouin Scattering -- 12.3 Brillouin Gain and Bandwidth -- 12.4 Threshold of Stimulated Brillouin Scattering -- 12.5 SBS in Active Fibers -- 12.6 Impact of SBS on Communication Systems -- 12.7 Fiber Brillouin Amplifiers -- 12.8 SBS Slow Light -- 12.9 Fiber Brillouin Lasers -- Problems -- References -- 13 Highly Nonlinear and Microstructured Fibers -- 13.1 The Nonlinear Parameter in Silica Fibers -- 13.2 Microstructured Fibers -- 13.3 Non-Silica Fibers -- 13.4 Soliton Self-Frequency Shift -- 13.5 Four-Wave Mixing -- 13.6 Supercontinuum Generation -- Problems -- References -- 14 Optical Signal Processing -- 14.1 Nonlinear Sources for WDM Systems -- 14.2 Optical Regeneration -- 14.3 Optical Pulse Train Generation. -- 14.4 Wavelength Conversion -- 14.5 All-Optical Switching -- Problems -- References -- Index.
Record Nr. UNINA-9910830703903321
Ferreira Mário F. S.  
Hoboken, New Jersey : , : Wiley, , c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Solitons in optical fiber systems / / Mário F. S. Ferreira
Solitons in optical fiber systems / / Mário F. S. Ferreira
Autore Ferreira Mário F. S.
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , [2022]
Descrizione fisica 1 online resource (392 pages)
Disciplina 530.124
Soggetto topico Optical fibers
Solitons
ISBN 1-119-50666-2
1-119-50665-4
1-119-50669-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910829826003321
Ferreira Mário F. S.  
Hoboken, New Jersey : , : John Wiley & Sons, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui