top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Modeling solvent environments [[electronic resource] ] : applications to simulations of biomolecules / / edited by Michael Feig
Modeling solvent environments [[electronic resource] ] : applications to simulations of biomolecules / / edited by Michael Feig
Pubbl/distr/stampa Weinheim, : Wiley-VCH Verlag GmbH, c2010
Descrizione fisica 1 online resource (336 p.)
Disciplina 541.3482011
Altri autori (Persone) FeigMichael
Soggetto topico Solvents
Biomolecules
Soggetto genere / forma Electronic books.
ISBN 1-282-47232-1
9786612472329
3-527-62925-4
3-527-62926-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Modeling Solvent Environments: Applications to Simulations of Biomolecules; Contents; Preface; List of Contributors; 1: Biomolecular Solvation in Theory and Experiment; 1.1 Introduction; 1.2 Theoretical Views of Solvation; 1.2.1 Equilibrium Thermodynamics of Solvation; 1.2.2 Radial Distribution Functions; 1.2.3 Integral Equation Formalisms; 1.2.4 Kirkwood-Buff Theory; 1.2.5 Kinetic Effects of Solvation; 1.3 Computer Simulation Methods in the Study of Solvation; 1.3.1 Molecular Dynamics and Monte Carlo Simulations; 1.3.2 Water Models; 1.3.3 Solvent Structure and Dynamics from Simulations
1.3.4 Free Energy Simulations1.4 Experimental Methods in the Study of Solvation; 1.4.1 X-Ray/Neutron Diffraction and Scattering; 1.4.2 Nuclear Magnetic Relaxation; 1.4.3 Optical Spectroscopy; 1.4.4 Dielectric Dispersion; 1.5 Hydration of Proteins; 1.5.1 Protein Folding and Peptide Conformations in Aqueous Solvent; 1.5.2 Molecular Properties of Water Near Protein Surfaces; 1.5.3 Water Molecules at Protein-Ligand and Protein-Protein Interfaces; 1.6 Hydration of Nucleic acids; 1.7 Non-Aqueous Solvation; 1.7.1 Alcohols; 1.7.2 Urea; 1.7.3 Glycerol; 1.8 Summary; References
2: Model-Free "Solvent Modeling" in Chemistry and Biochemistry Based on the Statistical Mechanics of Liquids2.1 Introduction; 2.2 Outline of the RISM and 3D-RISM theories; 2.3 Partial Molar Volume of Proteins; 2.4 Detecting Water Molecules Trapped Inside Protein; 2.5 Selective Ion Binding by Protein; 2.6 Water Molecules Identified as a Substrate for Enzymatic Hydrolysis of Cellulose; 2.7 CO Escape Pathway in Myoglobin; 2.7.1 Effect of Protein Structure on the Distribution of Xe; 2.7.2 Partial Molar Volume Change Through the CO Escape Pathway of Myoglobin; 2.8 Perspective; References
3: Developing Force Fields From the Microscopic Structure of Solutions: The Kirkwood-Buff Approach3.1 Introduction; 3.2 Biomolecular Force Fields; 3.3 Examples of Problems with Current Force Fields; 3.4 Kirkwood-Buff Theory; 3.5 Applications of Kirkwood-Buff Theory; 3.6 The General KBFF Approach; 3.7 Technical Aspects of the KBFF Approach; 3.8 Results for Urea and Water Binary Solutions; 3.9 Preferential Interactions of Urea; 3.10 Conclusions and Future Directions; Acknowledgments; References; 4: Osmolyte Influence on Protein Stability: Perspectives of Theory and Experiment; 4.1 Introduction
4.2 Denaturing Osmolytes4.2.1 Does Urea Weaken Water Structure?; 4.2.2 Effect of Urea on Hydrophobic Interactions; 4.2.3 Direct Interaction of Urea with Proteins; 4.3 Protecting Osmolytes; 4.3.1 Do Protecting Osmolytes Increase Water Structure?; 4.3.2 Effect of Protecting Osmolytes on Hydrophobic Interactions; 4.4 Mixed Osmolytes; 4.5 Conclusions; Acknowledgments; References; 5: Modeling Aqueous Solvent Effects through Local Properties of Water; 5.1 The Role of Water and Cosolutes on Macromolecular Thermodynamics; 5.2 Forces Induced by Water in Aqueous Solutions
5.2.1 Interactions in Water-Accessible Regions of Proteins
Record Nr. UNINA-9910139545203321
Weinheim, : Wiley-VCH Verlag GmbH, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling solvent environments [[electronic resource] ] : applications to simulations of biomolecules / / edited by Michael Feig
Modeling solvent environments [[electronic resource] ] : applications to simulations of biomolecules / / edited by Michael Feig
Pubbl/distr/stampa Weinheim, : Wiley-VCH Verlag GmbH, c2010
Descrizione fisica 1 online resource (336 p.)
Disciplina 541.3482011
Altri autori (Persone) FeigMichael
Soggetto topico Solvents
Biomolecules
ISBN 1-282-47232-1
9786612472329
3-527-62925-4
3-527-62926-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Modeling Solvent Environments: Applications to Simulations of Biomolecules; Contents; Preface; List of Contributors; 1: Biomolecular Solvation in Theory and Experiment; 1.1 Introduction; 1.2 Theoretical Views of Solvation; 1.2.1 Equilibrium Thermodynamics of Solvation; 1.2.2 Radial Distribution Functions; 1.2.3 Integral Equation Formalisms; 1.2.4 Kirkwood-Buff Theory; 1.2.5 Kinetic Effects of Solvation; 1.3 Computer Simulation Methods in the Study of Solvation; 1.3.1 Molecular Dynamics and Monte Carlo Simulations; 1.3.2 Water Models; 1.3.3 Solvent Structure and Dynamics from Simulations
1.3.4 Free Energy Simulations1.4 Experimental Methods in the Study of Solvation; 1.4.1 X-Ray/Neutron Diffraction and Scattering; 1.4.2 Nuclear Magnetic Relaxation; 1.4.3 Optical Spectroscopy; 1.4.4 Dielectric Dispersion; 1.5 Hydration of Proteins; 1.5.1 Protein Folding and Peptide Conformations in Aqueous Solvent; 1.5.2 Molecular Properties of Water Near Protein Surfaces; 1.5.3 Water Molecules at Protein-Ligand and Protein-Protein Interfaces; 1.6 Hydration of Nucleic acids; 1.7 Non-Aqueous Solvation; 1.7.1 Alcohols; 1.7.2 Urea; 1.7.3 Glycerol; 1.8 Summary; References
2: Model-Free "Solvent Modeling" in Chemistry and Biochemistry Based on the Statistical Mechanics of Liquids2.1 Introduction; 2.2 Outline of the RISM and 3D-RISM theories; 2.3 Partial Molar Volume of Proteins; 2.4 Detecting Water Molecules Trapped Inside Protein; 2.5 Selective Ion Binding by Protein; 2.6 Water Molecules Identified as a Substrate for Enzymatic Hydrolysis of Cellulose; 2.7 CO Escape Pathway in Myoglobin; 2.7.1 Effect of Protein Structure on the Distribution of Xe; 2.7.2 Partial Molar Volume Change Through the CO Escape Pathway of Myoglobin; 2.8 Perspective; References
3: Developing Force Fields From the Microscopic Structure of Solutions: The Kirkwood-Buff Approach3.1 Introduction; 3.2 Biomolecular Force Fields; 3.3 Examples of Problems with Current Force Fields; 3.4 Kirkwood-Buff Theory; 3.5 Applications of Kirkwood-Buff Theory; 3.6 The General KBFF Approach; 3.7 Technical Aspects of the KBFF Approach; 3.8 Results for Urea and Water Binary Solutions; 3.9 Preferential Interactions of Urea; 3.10 Conclusions and Future Directions; Acknowledgments; References; 4: Osmolyte Influence on Protein Stability: Perspectives of Theory and Experiment; 4.1 Introduction
4.2 Denaturing Osmolytes4.2.1 Does Urea Weaken Water Structure?; 4.2.2 Effect of Urea on Hydrophobic Interactions; 4.2.3 Direct Interaction of Urea with Proteins; 4.3 Protecting Osmolytes; 4.3.1 Do Protecting Osmolytes Increase Water Structure?; 4.3.2 Effect of Protecting Osmolytes on Hydrophobic Interactions; 4.4 Mixed Osmolytes; 4.5 Conclusions; Acknowledgments; References; 5: Modeling Aqueous Solvent Effects through Local Properties of Water; 5.1 The Role of Water and Cosolutes on Macromolecular Thermodynamics; 5.2 Forces Induced by Water in Aqueous Solutions
5.2.1 Interactions in Water-Accessible Regions of Proteins
Record Nr. UNINA-9910830153503321
Weinheim, : Wiley-VCH Verlag GmbH, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui