Convective heat transfer [[electronic resource] ] : solved problems / / Michel Favre-Marinet, Sedat Tardu |
Autore | Favre-Marinet Michel <1947-> |
Pubbl/distr/stampa | Hoboken, NJ, : ISTE/John Wiley and Sons, 2009 |
Descrizione fisica | 1 online resource (393 p.) |
Disciplina |
536.25
621.402/25 |
Altri autori (Persone) | TarduSedat <1959-> |
Collana | ISTE |
Soggetto topico |
Heat - Convection
Heat - Transmission |
ISBN |
1-118-61900-5
1-282-68414-0 9786612684142 0-470-61189-8 0-470-61043-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Convective Heat Transfer; Table of Contents; Foreword; Preface; Chapter 1. Fundamental Equations, Dimensionless Numbers; 1.1. Fundamental equations; 1.1.1. Local equations; 1.1.2. Integral conservation equations; 1.1.3. Boundary conditions; 1.1.4. Heat-transfer coefficient; 1.2. Dimensionless numbers; 1.3. Flows with variable physical properties: heat transfer in a laminar Couette flow; 1.3.1. Description of the problem; 1.3.2. Guidelines; 1.3.3. Solution; 1.4. Flows with dissipation; 1.4.1. Description of the problem; 1.4.2. Guidelines; 1.4.3. Solution; 1.5. Cooling of a sphere by a gas flow
1.5.1. Description of the problem1.5.2. Guidelines; 1.5.3. Solution; Chapter 2. Laminar Fully Developed Forced Convection in Ducts; 2.1. Hydrodynamics; 2.1.1. Characteristic parameters; 2.1.2. Flow regions; 2.2. Heat transfer; 2.2.1. Thermal boundary conditions; 2.2.2. Bulk temperature; 2.2.3. Heat-transfer coefficient; 2.2.4. Fully developed thermal region; 2.3. Heat transfer in a parallel-plate channel with uniform wall heat flux; 2.3.1. Description of the problem; 2.3.2. Guidelines; 2.3.3. Solution 2.4. Flow in a plane channel insulated on one side and heated at uniform temperature on the opposite side2.4.1. Description of the problem; 2.4.2. Guidelines; 2.4.3. Solution; Chapter 3. Forced Convection in Boundary Layer Flows; 3.1. Hydrodynamics; 3.1.1. Prandtl equations; 3.1.2. Classic results; 3.2. Heat transfer; 3.2.1. Equations of the thermal boundary layer; 3.2.2. Scale analysis; 3.2.3. Similarity temperature profiles; 3.3. Integral method; 3.3.1. Integral equations; 3.3.2. Principle of resolution using the integral method; 3.4. Heated jet nozzle; 3.4.1. Description of the problem 3.4.2. Solution3.5. Asymptotic behavior of thermal boundary layers; 3.5.1. Description of the problem; 3.5.2. Guidelines; 3.5.3. Solution; 3.6. Protection of a wall by a film of insulating material; 3.6.1. Description of the problem; 3.6.2. Guidelines; 3.6.3. Solution; 3.7. Cooling of a moving sheet; 3.7.1. Description of the problem; 3.7.2. Guidelines; 3.7.3. Solution; 3.8. Heat transfer near a rotating disk; 3.8.1. Description of the problem; 3.8.2. Guidelines; 3.8.3. Solution; 3.9. Thermal loss in a duct; 3.9.1. Description of the problem; 3.9.2. Guidelines; 3.9.3. Solution 3.10. Temperature profile for heat transfer with blowing3.10.1. Description of the problem; 3.10.2. Solution; Chapter 4. Forced Convection Around Obstacles; 4.1. Description of the flow; 4.2. Local heat-transfer coefficient for a circular cylinder; 4.3. Average heat-transfer coefficient for a circular cylinder; 4.4. Other obstacles; 4.5. Heat transfer for a rectangular plate in cross-flow; 4.5.1. Description of the problem; 4.5.2. Solution; 4.6. Heat transfer in a stagnation plane flow. Uniform temperature heating; 4.6.1. Description of the problem; 4.6.2. Guidelines; 4.6.3. Solution 4.7. Heat transfer in a stagnation plane flow. Step-wise heating at uniform flux |
Record Nr. | UNINA-9910139520103321 |
Favre-Marinet Michel <1947-> | ||
Hoboken, NJ, : ISTE/John Wiley and Sons, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Convective heat transfer [[electronic resource] ] : solved problems / / Michel Favre-Marinet, Sedat Tardu |
Autore | Favre-Marinet Michel <1947-> |
Pubbl/distr/stampa | Hoboken, NJ, : ISTE/John Wiley and Sons, 2009 |
Descrizione fisica | 1 online resource (393 p.) |
Disciplina |
536.25
621.402/25 |
Altri autori (Persone) | TarduSedat <1959-> |
Collana | ISTE |
Soggetto topico |
Heat - Convection
Heat - Transmission |
ISBN |
1-118-61900-5
1-282-68414-0 9786612684142 0-470-61189-8 0-470-61043-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Convective Heat Transfer; Table of Contents; Foreword; Preface; Chapter 1. Fundamental Equations, Dimensionless Numbers; 1.1. Fundamental equations; 1.1.1. Local equations; 1.1.2. Integral conservation equations; 1.1.3. Boundary conditions; 1.1.4. Heat-transfer coefficient; 1.2. Dimensionless numbers; 1.3. Flows with variable physical properties: heat transfer in a laminar Couette flow; 1.3.1. Description of the problem; 1.3.2. Guidelines; 1.3.3. Solution; 1.4. Flows with dissipation; 1.4.1. Description of the problem; 1.4.2. Guidelines; 1.4.3. Solution; 1.5. Cooling of a sphere by a gas flow
1.5.1. Description of the problem1.5.2. Guidelines; 1.5.3. Solution; Chapter 2. Laminar Fully Developed Forced Convection in Ducts; 2.1. Hydrodynamics; 2.1.1. Characteristic parameters; 2.1.2. Flow regions; 2.2. Heat transfer; 2.2.1. Thermal boundary conditions; 2.2.2. Bulk temperature; 2.2.3. Heat-transfer coefficient; 2.2.4. Fully developed thermal region; 2.3. Heat transfer in a parallel-plate channel with uniform wall heat flux; 2.3.1. Description of the problem; 2.3.2. Guidelines; 2.3.3. Solution 2.4. Flow in a plane channel insulated on one side and heated at uniform temperature on the opposite side2.4.1. Description of the problem; 2.4.2. Guidelines; 2.4.3. Solution; Chapter 3. Forced Convection in Boundary Layer Flows; 3.1. Hydrodynamics; 3.1.1. Prandtl equations; 3.1.2. Classic results; 3.2. Heat transfer; 3.2.1. Equations of the thermal boundary layer; 3.2.2. Scale analysis; 3.2.3. Similarity temperature profiles; 3.3. Integral method; 3.3.1. Integral equations; 3.3.2. Principle of resolution using the integral method; 3.4. Heated jet nozzle; 3.4.1. Description of the problem 3.4.2. Solution3.5. Asymptotic behavior of thermal boundary layers; 3.5.1. Description of the problem; 3.5.2. Guidelines; 3.5.3. Solution; 3.6. Protection of a wall by a film of insulating material; 3.6.1. Description of the problem; 3.6.2. Guidelines; 3.6.3. Solution; 3.7. Cooling of a moving sheet; 3.7.1. Description of the problem; 3.7.2. Guidelines; 3.7.3. Solution; 3.8. Heat transfer near a rotating disk; 3.8.1. Description of the problem; 3.8.2. Guidelines; 3.8.3. Solution; 3.9. Thermal loss in a duct; 3.9.1. Description of the problem; 3.9.2. Guidelines; 3.9.3. Solution 3.10. Temperature profile for heat transfer with blowing3.10.1. Description of the problem; 3.10.2. Solution; Chapter 4. Forced Convection Around Obstacles; 4.1. Description of the flow; 4.2. Local heat-transfer coefficient for a circular cylinder; 4.3. Average heat-transfer coefficient for a circular cylinder; 4.4. Other obstacles; 4.5. Heat transfer for a rectangular plate in cross-flow; 4.5.1. Description of the problem; 4.5.2. Solution; 4.6. Heat transfer in a stagnation plane flow. Uniform temperature heating; 4.6.1. Description of the problem; 4.6.2. Guidelines; 4.6.3. Solution 4.7. Heat transfer in a stagnation plane flow. Step-wise heating at uniform flux |
Record Nr. | UNINA-9910830787003321 |
Favre-Marinet Michel <1947-> | ||
Hoboken, NJ, : ISTE/John Wiley and Sons, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Convective heat transfer : solved problems / / Michel Favre-Marinet, Sedat Tardu |
Autore | Favre-Marinet Michel <1947-> |
Pubbl/distr/stampa | Hoboken, NJ, : ISTE/John Wiley and Sons, 2009 |
Descrizione fisica | 1 online resource (393 p.) |
Disciplina |
536.25
621.402/25 |
Altri autori (Persone) | TarduSedat <1959-> |
Collana | ISTE |
Soggetto topico |
Heat - Convection
Heat - Transmission |
ISBN |
1-118-61900-5
1-282-68414-0 9786612684142 0-470-61189-8 0-470-61043-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Convective Heat Transfer; Table of Contents; Foreword; Preface; Chapter 1. Fundamental Equations, Dimensionless Numbers; 1.1. Fundamental equations; 1.1.1. Local equations; 1.1.2. Integral conservation equations; 1.1.3. Boundary conditions; 1.1.4. Heat-transfer coefficient; 1.2. Dimensionless numbers; 1.3. Flows with variable physical properties: heat transfer in a laminar Couette flow; 1.3.1. Description of the problem; 1.3.2. Guidelines; 1.3.3. Solution; 1.4. Flows with dissipation; 1.4.1. Description of the problem; 1.4.2. Guidelines; 1.4.3. Solution; 1.5. Cooling of a sphere by a gas flow
1.5.1. Description of the problem1.5.2. Guidelines; 1.5.3. Solution; Chapter 2. Laminar Fully Developed Forced Convection in Ducts; 2.1. Hydrodynamics; 2.1.1. Characteristic parameters; 2.1.2. Flow regions; 2.2. Heat transfer; 2.2.1. Thermal boundary conditions; 2.2.2. Bulk temperature; 2.2.3. Heat-transfer coefficient; 2.2.4. Fully developed thermal region; 2.3. Heat transfer in a parallel-plate channel with uniform wall heat flux; 2.3.1. Description of the problem; 2.3.2. Guidelines; 2.3.3. Solution 2.4. Flow in a plane channel insulated on one side and heated at uniform temperature on the opposite side2.4.1. Description of the problem; 2.4.2. Guidelines; 2.4.3. Solution; Chapter 3. Forced Convection in Boundary Layer Flows; 3.1. Hydrodynamics; 3.1.1. Prandtl equations; 3.1.2. Classic results; 3.2. Heat transfer; 3.2.1. Equations of the thermal boundary layer; 3.2.2. Scale analysis; 3.2.3. Similarity temperature profiles; 3.3. Integral method; 3.3.1. Integral equations; 3.3.2. Principle of resolution using the integral method; 3.4. Heated jet nozzle; 3.4.1. Description of the problem 3.4.2. Solution3.5. Asymptotic behavior of thermal boundary layers; 3.5.1. Description of the problem; 3.5.2. Guidelines; 3.5.3. Solution; 3.6. Protection of a wall by a film of insulating material; 3.6.1. Description of the problem; 3.6.2. Guidelines; 3.6.3. Solution; 3.7. Cooling of a moving sheet; 3.7.1. Description of the problem; 3.7.2. Guidelines; 3.7.3. Solution; 3.8. Heat transfer near a rotating disk; 3.8.1. Description of the problem; 3.8.2. Guidelines; 3.8.3. Solution; 3.9. Thermal loss in a duct; 3.9.1. Description of the problem; 3.9.2. Guidelines; 3.9.3. Solution 3.10. Temperature profile for heat transfer with blowing3.10.1. Description of the problem; 3.10.2. Solution; Chapter 4. Forced Convection Around Obstacles; 4.1. Description of the flow; 4.2. Local heat-transfer coefficient for a circular cylinder; 4.3. Average heat-transfer coefficient for a circular cylinder; 4.4. Other obstacles; 4.5. Heat transfer for a rectangular plate in cross-flow; 4.5.1. Description of the problem; 4.5.2. Solution; 4.6. Heat transfer in a stagnation plane flow. Uniform temperature heating; 4.6.1. Description of the problem; 4.6.2. Guidelines; 4.6.3. Solution 4.7. Heat transfer in a stagnation plane flow. Step-wise heating at uniform flux |
Record Nr. | UNINA-9910877306903321 |
Favre-Marinet Michel <1947-> | ||
Hoboken, NJ, : ISTE/John Wiley and Sons, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|