Vai al contenuto principale della pagina

Statistical Inference Based on Kernel Distribution Function Estimators / / by Rizky Reza Fauzi, Yoshihiko Maesono



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Fauzi Rizky Reza Visualizza persona
Titolo: Statistical Inference Based on Kernel Distribution Function Estimators / / by Rizky Reza Fauzi, Yoshihiko Maesono Visualizza cluster
Pubblicazione: Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Edizione: 1st ed. 2023.
Descrizione fisica: 1 online resource (103 pages)
Disciplina: 519.5
Soggetto topico: Statistics
Nonparametric statistics
Mathematical statistics
Statistical Theory and Methods
Applied Statistics
Non-parametric Inference
Mathematical Statistics
Estadística matemàtica
Funcions de Kernel
Soggetto genere / forma: Llibres electrònics
Soggetto non controllato: Mathematics
Altri autori: MaesonoYoshihiko  
Nota di contenuto: Kernel density estimator -- Kernel distribution estimator -- Quantile estimation -- Nonparametric tests -- Mean residual life estimator.
Sommario/riassunto: This book presents a study of statistical inferences based on the kernel-type estimators of distribution functions. The inferences involve matters such as quantile estimation, nonparametric tests, and mean residual life expectation, to name just some. Convergence rates for the kernel estimators of density functions are slower than ordinary parametric estimators, which have root-n consistency. If the appropriate kernel function is used, the kernel estimators of the distribution functions recover the root-n consistency, and the inferences based on kernel distribution estimators have root-n consistency. Further, the kernel-type estimator produces smooth estimation results. The estimators based on the empirical distribution function have discrete distribution, and the normal approximation cannot be improved—that is, the validity of the Edgeworth expansion cannot be proved. If the support of the population density function is bounded, there is a boundary problem, namely the estimator does not have consistency near the boundary. The book also contains a study of the mean squared errors of the estimators and the Edgeworth expansion for quantile estimators.
Titolo autorizzato: Statistical Inference Based on Kernel Distribution Function Estimators  Visualizza cluster
ISBN: 981-9918-62-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910728952603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: JSS Research Series in Statistics, . 2364-0065