Adaptive approximation based control [[electronic resource] ] : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou |
Autore | Farrell Jay |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2006 |
Descrizione fisica | 1 online resource (440 p.) |
Disciplina | 629.8 |
Altri autori (Persone) | PolycarpouMarios |
Collana | Wiley series in adaptive and learning systems for signal processing, communication and control |
Soggetto topico |
Adaptive control systems
Feedback control systems |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-44804-0
9786610448043 0-470-32501-1 0-471-78181-9 0-471-78180-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ADAPTIVE APPROXIMATlON BASED CONTROL; CONTENTS; Preface; 1 Introduction; 1.1 Systems and Control Terminology; 1.2 Nonlinear Systems; 1.3 Feedback Control Approaches; 1.3.1 Linear Design; 1.3.2 Adaptive Linear Design; 1.3.3 Nonlinear Design; 1.3.4 Adaptive Approximation Based Design; 1.3.5 Example Summary; 1.4 Components of Approximation Based Control; 1.4.1 Control Architecture; 1.4.2 Function Approximator; 1.4.3 Stable Training Algorithm; 1.5 Discussion and Philosophical Comments; 1.6 Exercises and Design Problems; 2 Approximation Theory; 2.1 Motivating Example; 2.2 Interpolation
2.3 Function Approximation2.3.1 Offline (Batch) Function Approximation; 2.3.2 Adaptive Function Approximation; 2.4 Approximator Properties; 2.4.1 Parameter (Non) Linearity; 2.4.2 Classical Approximation Results; 2.4.3 Network Approximators; 2.4.4 Nodal Processors; 2.4.5 Universal Approximator; 2.4.6 Best Approximator Property; 2.4.7 Generalization; 2.4.8 Extent of Influence Function Support; 2.4.9 Approximator Transparency; 2.4.10 Haar Conditions; 2.4.11 Multivariable Approximation by Tensor Products; 2.5 Summary; 2.6 Exercises and Design Problems; 3 Approximation Structures; 3.1 Model Types 3.1.1 Physically Based Models3.1.2 Structure (Model) Free Approximation; 3.1.3 Function Approximation Structures; 3.2 Polynomials; 3.2.1 Description; 3.2.2 Properties; 3.3 Splines; 3.3.1 Description; 3.3.2 Properties; 3.4 Radial Basis Functions; 3.4.1 Description; 3.4.2 Properties; 3.5 Cerebellar Model Articulation Controller; 3.5.1 Description; 3.5.2 Properties; 3.6 Multilayer Perceptron; 3.6.1 Description; 3.6.2 Properties; 3.7 Fuzzy Approximation; 3.7.1 Description; 3.7.2 Takagi-Sugeno Fuzzy Systems; 3.7.3 Properties; 3.8 Wavelets; 3.8.1 Multiresolution Analysis (MRA); 3.8.2 MRA Properties 3.9 Further Reading3.10 Exercises and Design Problems; 4 Parameter Estimation Methods; 4.1 Formulation for Adaptive Approximation; 4.1.1 Illustrative Example; 4.1.2 Motivating Simulation Examples; 4.1.3 Problem Statement; 4.1.4 Discussion of Issues in Parametric Estimation; 4.2 Derivation of Parametric Models; 4.2.1 Problem Formulation for Full-State Measurement; 4.2.2 Filtering Techniques; 4.2.3 SPR Filtering; 4.2.4 Linearly Parameterized Approximators; 4.2.5 Parametric Models in State Space Form; 4.2.6 Parametric Models of Discrete-Time Systems 4.2.7 Parametric Models of Input-Output Systems4.3 Design of Online Learning Schemes; 4.3.1 Error Filtering Online Learning (EFOL) Scheme; 4.3.2 Regressor Filtering Online Learning (RFOL) Scheme; 4.4 Continuous-Time Parameter Estimation; 4.4.1 Lyapunov-Based Algorithms; 4.4.2 Optimization Methods; 4.4.3 Summary; 4.5 Online Learning: Analysis; 4.5.1 Analysis of LIP EFOL Scheme with Lyapunov Synthesis Method; 4.5.2 Analysis of LIP RFOL Scheme with the Gradient Algorithm; 4.5.3 Analysis of LIP RFOL Scheme with RLS Algorithm; 4.5.4 Persistency of Excitation and Parameter Convergence 4.6 Robust Learning Algorithms |
Record Nr. | UNINA-9910143397203321 |
Farrell Jay
![]() |
||
Hoboken, N.J., : Wiley-Interscience, c2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Adaptive approximation based control [[electronic resource] ] : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou |
Autore | Farrell Jay |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2006 |
Descrizione fisica | 1 online resource (440 p.) |
Disciplina | 629.8 |
Altri autori (Persone) | PolycarpouMarios |
Collana | Wiley series in adaptive and learning systems for signal processing, communication and control |
Soggetto topico |
Adaptive control systems
Feedback control systems |
ISBN |
1-280-44804-0
9786610448043 0-470-32501-1 0-471-78181-9 0-471-78180-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ADAPTIVE APPROXIMATlON BASED CONTROL; CONTENTS; Preface; 1 Introduction; 1.1 Systems and Control Terminology; 1.2 Nonlinear Systems; 1.3 Feedback Control Approaches; 1.3.1 Linear Design; 1.3.2 Adaptive Linear Design; 1.3.3 Nonlinear Design; 1.3.4 Adaptive Approximation Based Design; 1.3.5 Example Summary; 1.4 Components of Approximation Based Control; 1.4.1 Control Architecture; 1.4.2 Function Approximator; 1.4.3 Stable Training Algorithm; 1.5 Discussion and Philosophical Comments; 1.6 Exercises and Design Problems; 2 Approximation Theory; 2.1 Motivating Example; 2.2 Interpolation
2.3 Function Approximation2.3.1 Offline (Batch) Function Approximation; 2.3.2 Adaptive Function Approximation; 2.4 Approximator Properties; 2.4.1 Parameter (Non) Linearity; 2.4.2 Classical Approximation Results; 2.4.3 Network Approximators; 2.4.4 Nodal Processors; 2.4.5 Universal Approximator; 2.4.6 Best Approximator Property; 2.4.7 Generalization; 2.4.8 Extent of Influence Function Support; 2.4.9 Approximator Transparency; 2.4.10 Haar Conditions; 2.4.11 Multivariable Approximation by Tensor Products; 2.5 Summary; 2.6 Exercises and Design Problems; 3 Approximation Structures; 3.1 Model Types 3.1.1 Physically Based Models3.1.2 Structure (Model) Free Approximation; 3.1.3 Function Approximation Structures; 3.2 Polynomials; 3.2.1 Description; 3.2.2 Properties; 3.3 Splines; 3.3.1 Description; 3.3.2 Properties; 3.4 Radial Basis Functions; 3.4.1 Description; 3.4.2 Properties; 3.5 Cerebellar Model Articulation Controller; 3.5.1 Description; 3.5.2 Properties; 3.6 Multilayer Perceptron; 3.6.1 Description; 3.6.2 Properties; 3.7 Fuzzy Approximation; 3.7.1 Description; 3.7.2 Takagi-Sugeno Fuzzy Systems; 3.7.3 Properties; 3.8 Wavelets; 3.8.1 Multiresolution Analysis (MRA); 3.8.2 MRA Properties 3.9 Further Reading3.10 Exercises and Design Problems; 4 Parameter Estimation Methods; 4.1 Formulation for Adaptive Approximation; 4.1.1 Illustrative Example; 4.1.2 Motivating Simulation Examples; 4.1.3 Problem Statement; 4.1.4 Discussion of Issues in Parametric Estimation; 4.2 Derivation of Parametric Models; 4.2.1 Problem Formulation for Full-State Measurement; 4.2.2 Filtering Techniques; 4.2.3 SPR Filtering; 4.2.4 Linearly Parameterized Approximators; 4.2.5 Parametric Models in State Space Form; 4.2.6 Parametric Models of Discrete-Time Systems 4.2.7 Parametric Models of Input-Output Systems4.3 Design of Online Learning Schemes; 4.3.1 Error Filtering Online Learning (EFOL) Scheme; 4.3.2 Regressor Filtering Online Learning (RFOL) Scheme; 4.4 Continuous-Time Parameter Estimation; 4.4.1 Lyapunov-Based Algorithms; 4.4.2 Optimization Methods; 4.4.3 Summary; 4.5 Online Learning: Analysis; 4.5.1 Analysis of LIP EFOL Scheme with Lyapunov Synthesis Method; 4.5.2 Analysis of LIP RFOL Scheme with the Gradient Algorithm; 4.5.3 Analysis of LIP RFOL Scheme with RLS Algorithm; 4.5.4 Persistency of Excitation and Parameter Convergence 4.6 Robust Learning Algorithms |
Record Nr. | UNINA-9910830081303321 |
Farrell Jay
![]() |
||
Hoboken, N.J., : Wiley-Interscience, c2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Adaptive approximation based control : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou |
Autore | Farrell Jay |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2006 |
Descrizione fisica | 1 online resource (440 p.) |
Disciplina | 629.8/36 |
Altri autori (Persone) | PolycarpouMarios |
Collana | Wiley series in adaptive and learning systems for signal processing, communication and control |
Soggetto topico |
Adaptive control systems
Feedback control systems |
ISBN |
1-280-44804-0
9786610448043 0-470-32501-1 0-471-78181-9 0-471-78180-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ADAPTIVE APPROXIMATlON BASED CONTROL; CONTENTS; Preface; 1 Introduction; 1.1 Systems and Control Terminology; 1.2 Nonlinear Systems; 1.3 Feedback Control Approaches; 1.3.1 Linear Design; 1.3.2 Adaptive Linear Design; 1.3.3 Nonlinear Design; 1.3.4 Adaptive Approximation Based Design; 1.3.5 Example Summary; 1.4 Components of Approximation Based Control; 1.4.1 Control Architecture; 1.4.2 Function Approximator; 1.4.3 Stable Training Algorithm; 1.5 Discussion and Philosophical Comments; 1.6 Exercises and Design Problems; 2 Approximation Theory; 2.1 Motivating Example; 2.2 Interpolation
2.3 Function Approximation2.3.1 Offline (Batch) Function Approximation; 2.3.2 Adaptive Function Approximation; 2.4 Approximator Properties; 2.4.1 Parameter (Non) Linearity; 2.4.2 Classical Approximation Results; 2.4.3 Network Approximators; 2.4.4 Nodal Processors; 2.4.5 Universal Approximator; 2.4.6 Best Approximator Property; 2.4.7 Generalization; 2.4.8 Extent of Influence Function Support; 2.4.9 Approximator Transparency; 2.4.10 Haar Conditions; 2.4.11 Multivariable Approximation by Tensor Products; 2.5 Summary; 2.6 Exercises and Design Problems; 3 Approximation Structures; 3.1 Model Types 3.1.1 Physically Based Models3.1.2 Structure (Model) Free Approximation; 3.1.3 Function Approximation Structures; 3.2 Polynomials; 3.2.1 Description; 3.2.2 Properties; 3.3 Splines; 3.3.1 Description; 3.3.2 Properties; 3.4 Radial Basis Functions; 3.4.1 Description; 3.4.2 Properties; 3.5 Cerebellar Model Articulation Controller; 3.5.1 Description; 3.5.2 Properties; 3.6 Multilayer Perceptron; 3.6.1 Description; 3.6.2 Properties; 3.7 Fuzzy Approximation; 3.7.1 Description; 3.7.2 Takagi-Sugeno Fuzzy Systems; 3.7.3 Properties; 3.8 Wavelets; 3.8.1 Multiresolution Analysis (MRA); 3.8.2 MRA Properties 3.9 Further Reading3.10 Exercises and Design Problems; 4 Parameter Estimation Methods; 4.1 Formulation for Adaptive Approximation; 4.1.1 Illustrative Example; 4.1.2 Motivating Simulation Examples; 4.1.3 Problem Statement; 4.1.4 Discussion of Issues in Parametric Estimation; 4.2 Derivation of Parametric Models; 4.2.1 Problem Formulation for Full-State Measurement; 4.2.2 Filtering Techniques; 4.2.3 SPR Filtering; 4.2.4 Linearly Parameterized Approximators; 4.2.5 Parametric Models in State Space Form; 4.2.6 Parametric Models of Discrete-Time Systems 4.2.7 Parametric Models of Input-Output Systems4.3 Design of Online Learning Schemes; 4.3.1 Error Filtering Online Learning (EFOL) Scheme; 4.3.2 Regressor Filtering Online Learning (RFOL) Scheme; 4.4 Continuous-Time Parameter Estimation; 4.4.1 Lyapunov-Based Algorithms; 4.4.2 Optimization Methods; 4.4.3 Summary; 4.5 Online Learning: Analysis; 4.5.1 Analysis of LIP EFOL Scheme with Lyapunov Synthesis Method; 4.5.2 Analysis of LIP RFOL Scheme with the Gradient Algorithm; 4.5.3 Analysis of LIP RFOL Scheme with RLS Algorithm; 4.5.4 Persistency of Excitation and Parameter Convergence 4.6 Robust Learning Algorithms |
Record Nr. | UNINA-9910876607803321 |
Farrell Jay
![]() |
||
Hoboken, N.J., : Wiley-Interscience, c2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|