top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Resource management for on-demand mission-critical internet of things applications / / Junaid Farooq, Quanyan Zhu
Resource management for on-demand mission-critical internet of things applications / / Junaid Farooq, Quanyan Zhu
Autore Farooq Junaid
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2021]
Descrizione fisica 1 online resource (227 pages)
Disciplina 004.678
Collana IEEE Press Ser.
Soggetto topico Internet of things
Soggetto genere / forma Electronic books.
ISBN 1-119-71612-8
1-119-71611-X
1-119-71610-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Acronyms -- Part I Introduction -- Chapter 1 Internet of Things‐Enabled Systems and Infrastructure -- 1.1 Cyber-Physical Realm of IoT -- 1.2 IoT in Mission‐Critical Applications -- 1.3 Overview of the Book -- 1.3.1 Main Topics -- 1.3.1.1 Dynamic Reservation of Wireless Spectrum Resources -- 1.3.1.2 Dynamic Cross‐Layer Connectivity Using Aerial Networks -- 1.3.1.3 Dynamic Processes Over Multiplex Spatial Networks and Reconfigurable Design -- 1.3.1.4 Sequential Resource Allocation Under Spatio‐Temporal Uncertainties -- 1.3.2 Notations -- Chapter 2 Resource Management in IoT‐Enabled Interdependent Infrastructure -- 2.1 System Complexity and Scale -- 2.2 Network Geometry and Dynamics -- 2.3 On‐Demand MC‐IoT Services and Decision Avenues -- 2.4 Performance Metrics -- 2.5 Overview of Scientific Methodologies -- Part II Design Challenges in MC‐IoT -- Chapter 3 Wireless Connectivity Challenges -- 3.1 Spectrum Scarcity and Reservation Based Access -- 3.2 Connectivity in Remote Environments -- 3.3 IoT Networks in Adversarial Environments -- Chapter 4 Resource and Service Provisioning Challenges -- 4.1 Efficient Allocation of Cloud Computing Resources -- 4.2 Dynamic Pricing in the Cloud -- 4.3 Spatio‐Temporal Urban Service Provisioning -- Part III Wireless Connectivity Mechanisms for MC‐IoT -- Chapter 5 Reservation‐Based Spectrum Access Contracts -- 5.1 Reservation of Time-Frequency Blocks in the Spectrum -- 5.1.1 Network Model -- 5.1.2 Utility of Spectrum Reservation -- 5.2 Dynamic Contract Formulation -- 5.2.1 Objective of Network Operator -- 5.2.2 Spectrum Reservation Contract -- 5.2.2.1 Operator Profitability -- 5.2.2.2 IC and IR Constraints -- 5.2.3 Optimal Contracting Problem -- 5.2.4 Solution to the Optimization Problem -- 5.3 Mission‐Oriented Pricing and Refund Policies.
5.4 Summary and Conclusion -- Chapter 6 Resilient Connectivity of IoT Using Aerial Networks -- 6.1 Connectivity in the Absence of Backhaul Networks -- 6.2 Aerial Base Station Modeling -- 6.3 Dynamic Coverage and Connectivity Mechanism -- 6.3.1 MAP-MSD Matching -- 6.3.2 MAP Dynamics and Objective -- 6.3.3 Controller Design -- 6.3.3.1 Attractive and Repulsive Function -- 6.3.3.2 Velocity Consensus Function -- 6.3.4 Individual Goal Function -- 6.3.5 Cluster Centers -- 6.4 Performance Evaluation and Simulation Results -- 6.4.1 Results and Discussion -- 6.4.1.1 Simulation Parameters -- 6.4.1.2 Resilience -- 6.4.1.3 Comparison -- 6.5 Summary and Conclusion -- Part IV Secure Network Design Mechanisms -- Chapter 7 Wireless IoT Network Design in Adversarial Environments -- 7.1 Adversarial Network Scenarios -- 7.2 Modeling Device Capabilities and Network Heterogeneity -- 7.2.1 Network Geometry -- 7.2.2 Network Connectivity -- 7.2.2.1 Intra‐layer Connectivity -- 7.2.2.2 Network‐wide Connectivity -- 7.3 Information Dissemination Under Attacks -- 7.3.1 Information Dynamics -- 7.3.1.1 Single Message Propagation -- 7.3.1.2 Multiple Message Propagation -- 7.3.2 Steady State Analysis -- 7.4 Mission‐Specific Network Optimization -- 7.4.1 Equilibrium Solution -- 7.4.2 Secure and Reconfigurable Network Design -- 7.5 Simulation Results and Validation -- 7.5.1 Mission Scenarios -- 7.5.1.1 Intelligence -- 7.5.1.2 Encounter Battle -- 7.6 Summary and Conclusion -- Chapter 8 Network Defense Mechanisms Against Malware Infiltration -- 8.1 Malware Infiltration and Botnets -- 8.1.1 Network Model -- 8.1.2 Threat Model -- 8.2 Propagation Modeling and Analysis -- 8.2.1 Modeling of Malware and Information Evolution -- 8.2.2 State Space Representation and Dynamics -- 8.2.3 Analysis of Equilibrium State -- 8.3 Patching Mechanism for Network Defense -- 8.3.1 Simulation Results.
8.3.2 Simulation and Validation -- 8.4 Summary and Conclusion -- Part V Resource Provisioning Mechanisms -- Chapter 9 Revenue Maximizing Cloud Resource Allocation -- 9.1 Cloud Service Provider Resource Allocation Problem -- 9.2 Allocation and Pricing Rule -- 9.3 Dynamic Revenue Maximization -- 9.3.1 Adaptive and Resilient Allocation and Pricing Policy -- 9.4 Numerical Results and Discussions -- 9.5 Summary and Conclusion -- Chapter 10 Dynamic Pricing of Fog‐Enabled MC‐IoT Applications -- 10.1 Edge Computing and Delay Modeling -- 10.2 Allocation Efficiency and Quality of Experience -- 10.2.1 Allocation Policy -- 10.2.2 Pricing Policy -- 10.3 Optimal Allocation and Pricing Rules -- 10.3.1 Single VMI Case -- 10.3.2 Multiple VMI Case -- 10.3.3 Expected Revenue -- 10.3.4 Implementation of Dynamic VMI Allocation and Pricing -- 10.4 Numerical Experiments and Discussion -- 10.4.1 Experiment Setup -- 10.4.2 Simulation Results -- 10.4.3 Comparison with Other Approaches -- 10.5 Summary and Conclusion -- Chapter 11 Resource Provisioning to Spatio‐Temporal Urban Services -- 11.1 Spatio‐Temporal Modeling of Urban Service Requests -- 11.1.1 Characterization of Service Requests -- 11.1.2 Utility of Resource Allocation -- 11.1.3 Problem Definition -- 11.2 Optimal Dynamic Allocation Mechanism -- 11.2.1 Dynamic Programming Solution -- 11.2.2 Computation and Implementation -- 11.3 Numerical Results and Discussion -- 11.3.1 Special Cases -- 11.3.1.1 Power Law Utility -- 11.3.1.2 Exponential Utility -- 11.3.2 Performance Evaluation and Comparison -- 11.4 Summary and Conclusions -- Part VI Conclusion -- Chapter 12 Challenges and Opportunities in the IoT Space -- 12.1 Broader Insights and Future Directions -- 12.1.1 Distributed Cross‐Layer Intelligence for Mission‐Critical IoT Services -- 12.1.1.1 Secure and Resilient Networking for Massive IoT Networks.
12.1.1.2 Autonomic Networked CPS: From Military to Civilian Applications -- 12.1.1.3 Strategic Resource Provisioning for Mission‐Critical IoT Services -- 12.2 Future Research Directions -- 12.2.1 Distributed Learning and Data Fusion for Security and Resilience in IoT‐Driven Urban Applications -- 12.2.1.1 Data‐Driven Learning and Decision‐Making for Smart City Service Provisioning -- 12.2.1.2 Market Design for On‐Demand and Managed IoT‐Enabled Urban Services -- 12.2.1.3 Proactive Resiliency Planning and Learning for Disaster Management in Cities -- 12.2.2 Supply Chain Security and Resilience of IoT -- 12.3 Concluding Remarks -- Bibliography -- Index -- EULA.
Record Nr. UNINA-9910555258303321
Farooq Junaid  
Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Resource management for on-demand mission-critical internet of things applications / / Junaid Farooq, Quanyan Zhu
Resource management for on-demand mission-critical internet of things applications / / Junaid Farooq, Quanyan Zhu
Autore Farooq Junaid
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2021]
Descrizione fisica 1 online resource (227 pages)
Disciplina 004.678
Collana IEEE Press
Soggetto topico Internet of things
ISBN 1-119-71612-8
1-119-71611-X
1-119-71610-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Acronyms -- Part I Introduction -- Chapter 1 Internet of Things‐Enabled Systems and Infrastructure -- 1.1 Cyber-Physical Realm of IoT -- 1.2 IoT in Mission‐Critical Applications -- 1.3 Overview of the Book -- 1.3.1 Main Topics -- 1.3.1.1 Dynamic Reservation of Wireless Spectrum Resources -- 1.3.1.2 Dynamic Cross‐Layer Connectivity Using Aerial Networks -- 1.3.1.3 Dynamic Processes Over Multiplex Spatial Networks and Reconfigurable Design -- 1.3.1.4 Sequential Resource Allocation Under Spatio‐Temporal Uncertainties -- 1.3.2 Notations -- Chapter 2 Resource Management in IoT‐Enabled Interdependent Infrastructure -- 2.1 System Complexity and Scale -- 2.2 Network Geometry and Dynamics -- 2.3 On‐Demand MC‐IoT Services and Decision Avenues -- 2.4 Performance Metrics -- 2.5 Overview of Scientific Methodologies -- Part II Design Challenges in MC‐IoT -- Chapter 3 Wireless Connectivity Challenges -- 3.1 Spectrum Scarcity and Reservation Based Access -- 3.2 Connectivity in Remote Environments -- 3.3 IoT Networks in Adversarial Environments -- Chapter 4 Resource and Service Provisioning Challenges -- 4.1 Efficient Allocation of Cloud Computing Resources -- 4.2 Dynamic Pricing in the Cloud -- 4.3 Spatio‐Temporal Urban Service Provisioning -- Part III Wireless Connectivity Mechanisms for MC‐IoT -- Chapter 5 Reservation‐Based Spectrum Access Contracts -- 5.1 Reservation of Time-Frequency Blocks in the Spectrum -- 5.1.1 Network Model -- 5.1.2 Utility of Spectrum Reservation -- 5.2 Dynamic Contract Formulation -- 5.2.1 Objective of Network Operator -- 5.2.2 Spectrum Reservation Contract -- 5.2.2.1 Operator Profitability -- 5.2.2.2 IC and IR Constraints -- 5.2.3 Optimal Contracting Problem -- 5.2.4 Solution to the Optimization Problem -- 5.3 Mission‐Oriented Pricing and Refund Policies.
5.4 Summary and Conclusion -- Chapter 6 Resilient Connectivity of IoT Using Aerial Networks -- 6.1 Connectivity in the Absence of Backhaul Networks -- 6.2 Aerial Base Station Modeling -- 6.3 Dynamic Coverage and Connectivity Mechanism -- 6.3.1 MAP-MSD Matching -- 6.3.2 MAP Dynamics and Objective -- 6.3.3 Controller Design -- 6.3.3.1 Attractive and Repulsive Function -- 6.3.3.2 Velocity Consensus Function -- 6.3.4 Individual Goal Function -- 6.3.5 Cluster Centers -- 6.4 Performance Evaluation and Simulation Results -- 6.4.1 Results and Discussion -- 6.4.1.1 Simulation Parameters -- 6.4.1.2 Resilience -- 6.4.1.3 Comparison -- 6.5 Summary and Conclusion -- Part IV Secure Network Design Mechanisms -- Chapter 7 Wireless IoT Network Design in Adversarial Environments -- 7.1 Adversarial Network Scenarios -- 7.2 Modeling Device Capabilities and Network Heterogeneity -- 7.2.1 Network Geometry -- 7.2.2 Network Connectivity -- 7.2.2.1 Intra‐layer Connectivity -- 7.2.2.2 Network‐wide Connectivity -- 7.3 Information Dissemination Under Attacks -- 7.3.1 Information Dynamics -- 7.3.1.1 Single Message Propagation -- 7.3.1.2 Multiple Message Propagation -- 7.3.2 Steady State Analysis -- 7.4 Mission‐Specific Network Optimization -- 7.4.1 Equilibrium Solution -- 7.4.2 Secure and Reconfigurable Network Design -- 7.5 Simulation Results and Validation -- 7.5.1 Mission Scenarios -- 7.5.1.1 Intelligence -- 7.5.1.2 Encounter Battle -- 7.6 Summary and Conclusion -- Chapter 8 Network Defense Mechanisms Against Malware Infiltration -- 8.1 Malware Infiltration and Botnets -- 8.1.1 Network Model -- 8.1.2 Threat Model -- 8.2 Propagation Modeling and Analysis -- 8.2.1 Modeling of Malware and Information Evolution -- 8.2.2 State Space Representation and Dynamics -- 8.2.3 Analysis of Equilibrium State -- 8.3 Patching Mechanism for Network Defense -- 8.3.1 Simulation Results.
8.3.2 Simulation and Validation -- 8.4 Summary and Conclusion -- Part V Resource Provisioning Mechanisms -- Chapter 9 Revenue Maximizing Cloud Resource Allocation -- 9.1 Cloud Service Provider Resource Allocation Problem -- 9.2 Allocation and Pricing Rule -- 9.3 Dynamic Revenue Maximization -- 9.3.1 Adaptive and Resilient Allocation and Pricing Policy -- 9.4 Numerical Results and Discussions -- 9.5 Summary and Conclusion -- Chapter 10 Dynamic Pricing of Fog‐Enabled MC‐IoT Applications -- 10.1 Edge Computing and Delay Modeling -- 10.2 Allocation Efficiency and Quality of Experience -- 10.2.1 Allocation Policy -- 10.2.2 Pricing Policy -- 10.3 Optimal Allocation and Pricing Rules -- 10.3.1 Single VMI Case -- 10.3.2 Multiple VMI Case -- 10.3.3 Expected Revenue -- 10.3.4 Implementation of Dynamic VMI Allocation and Pricing -- 10.4 Numerical Experiments and Discussion -- 10.4.1 Experiment Setup -- 10.4.2 Simulation Results -- 10.4.3 Comparison with Other Approaches -- 10.5 Summary and Conclusion -- Chapter 11 Resource Provisioning to Spatio‐Temporal Urban Services -- 11.1 Spatio‐Temporal Modeling of Urban Service Requests -- 11.1.1 Characterization of Service Requests -- 11.1.2 Utility of Resource Allocation -- 11.1.3 Problem Definition -- 11.2 Optimal Dynamic Allocation Mechanism -- 11.2.1 Dynamic Programming Solution -- 11.2.2 Computation and Implementation -- 11.3 Numerical Results and Discussion -- 11.3.1 Special Cases -- 11.3.1.1 Power Law Utility -- 11.3.1.2 Exponential Utility -- 11.3.2 Performance Evaluation and Comparison -- 11.4 Summary and Conclusions -- Part VI Conclusion -- Chapter 12 Challenges and Opportunities in the IoT Space -- 12.1 Broader Insights and Future Directions -- 12.1.1 Distributed Cross‐Layer Intelligence for Mission‐Critical IoT Services -- 12.1.1.1 Secure and Resilient Networking for Massive IoT Networks.
12.1.1.2 Autonomic Networked CPS: From Military to Civilian Applications -- 12.1.1.3 Strategic Resource Provisioning for Mission‐Critical IoT Services -- 12.2 Future Research Directions -- 12.2.1 Distributed Learning and Data Fusion for Security and Resilience in IoT‐Driven Urban Applications -- 12.2.1.1 Data‐Driven Learning and Decision‐Making for Smart City Service Provisioning -- 12.2.1.2 Market Design for On‐Demand and Managed IoT‐Enabled Urban Services -- 12.2.1.3 Proactive Resiliency Planning and Learning for Disaster Management in Cities -- 12.2.2 Supply Chain Security and Resilience of IoT -- 12.3 Concluding Remarks -- Bibliography -- Index -- EULA.
Record Nr. UNINA-9910830377003321
Farooq Junaid  
Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui