| Nota di contenuto |
Intro -- Aircraft Propulsion -- Table of Contents -- Preface to the Second Edition -- Acknowledgments -- Preface -- Intended Audience -- Motivation -- Mathematical Level -- Chapter Organization and Topical Coverage -- Instructor Resources -- Acknowledgments -- Nomenclature -- 1 Introduction -- 1.1 History of the Airbreathing Jet Engine, a Twentieth-Century Invention-The Beginning -- 1.2 Innovations in Aircraft Gas Turbine Engines -- 1.2.1 Multispool Configuration -- 1.2.2 Variable Stator -- 1.2.3 Transonic Compressor -- 1.2.4 Low-Emission Combustor -- 1.2.5 Turbine Cooling -- 1.2.6 Exhaust Nozzles -- 1.2.7 Modern Materials and Manufacturing Techniques -- 1.3 New Engine Concepts -- 1.3.1 Advanced Turboprop (ATP) and Geared Turbofan (GTF) -- 1.3.2 Advanced Airbreathing Rocket Technology -- 1.3.3 Wave Rotor Topping Cycle -- 1.3.4 Pulse Detonation Engine (PDE) -- 1.3.5 Millimeter-Scale Gas Turbine Engines: Triumph of MEMS and Digital Fabrication -- 1.3.6 Combined Cycle Propulsion: Engines from Takeoff to Space -- 1.4 New Vehicles -- 1.5 Summary -- 1.6 Roadmap for the Second Edition -- References -- Problems -- 2 Compressible Flow with Friction and Heat: A Review -- 2.1 Introduction -- 2.2 A Brief Review of Thermodynamics -- 2.3 Isentropic Process and Isentropic Flow -- 2.4 Conservation Principles for Systems and Control Volumes -- 2.5 Speed of Sound & -- Mach Number -- 2.6 Stagnation State -- 2.7 Quasi-One-Dimensional Flow -- 2.8 Area-Mach Number Relationship -- 2.9 Sonic Throat -- 2.10 Waves in Supersonic Flow -- 2.11 Normal Shocks -- 2.12 Oblique Shocks -- 2.13 Conical Shocks -- 2.14 Expansion Waves -- 2.15 Frictionless, Constant-Area Duct Flow with Heat Transfer -- 2.16 Adiabatic Flow of a Calorically Perfect Gas in a Constant-Area Duct with Friction -- 2.17 Friction (Drag) Coefficient Cf and D'Arcy Friction Factor fD.
2.18 Dimensionless Parameters -- 2.19 Fluid Impulse -- 2.20 Summary of Fluid Impulse -- References -- Problems -- 3 Engine Thrust and Performance Parameters -- 3.1 Introduction -- 3.1.1 Takeoff Thrust -- 3.2 Installed Thrust-Some Bookkeeping Issues on Thrust and Drag -- 3.3 Engine Thrust Based on the Sum of Component Impulse -- 3.4 Rocket Thrust -- 3.5 Airbreathing Engine Performance Parameters -- 3.5.1 Specific Thrust -- 3.5.2 Specific Fuel Consumption and Specific Impulse -- 3.5.3 Thermal Efficiency -- 3.5.4 Propulsive Efficiency -- 3.5.5 Engine Overall Efficiency and Its Impact on Aircraft Range and Endurance -- 3.6 Modern Engines, Their Architecture and Some Performance Characteristics -- 3.7 Summary -- References -- Problems -- 4 Gas Turbine Engine Cycle Analysis -- 4.1 Introduction -- 4.2 The Gas Generator -- 4.3 Aircraft Gas Turbine Engines -- 4.3.1 The Turbojet Engine -- 4.3.2 The Turbojet Engine with an Afterburner -- 4.3.3 The Turbofan Engine -- 4.3.4 Ultra-High Bypass (UHB) Turbofan Engines -- 4.4 Analysis of a Mixed-Exhaust Turbofan Engine with an Afterburner -- 4.4.1 Mixer -- 4.4.2 Cycle Analysis -- 4.5 The Turboprop Engine -- 4.5.1 Introduction -- 4.5.2 Propeller Theory -- 4.5.3 Turboprop Cycle Analysis -- 4.6 Summary -- References -- Problems -- 5 General Aviation and Uninhabited Aerial Vehicle Propulsion System -- 5.1 Introduction -- 5.2 Cycle Analysis -- 5.2.1 Otto Cycle -- 5.2.2 Real Engine Cycles -- 5.3 Power and Efficiency -- 5.4 Engine Components and Classifications -- 5.4.1 Engine Components -- 5.4.2 Reciprocating Engine Classifications -- 5.5 Scaling of Aircraft Reciprocating Engines -- 5.5.1 Scaling of Aircraft Diesel Engines -- 5.6 Aircraft Engine Systems -- 5.6.1 Aviation Fuels and Engine Knock -- 5.6.2 Carburetion and Fuel Injection Systems -- 5.6.3 Ignition Systems -- 5.6.4 Lubrication Systems -- 5.6.5 Supercharging.
5.7 Electric Engines -- 5.7.1 Electric Motors -- 5.7.2 Solar cells -- 5.7.3 Advanced Batteries -- 5.7.4 Fuel cells -- 5.7.5 State of the Art for Electric Propulsion - Future Technology -- 5.8 Propellers and Reduction Gears -- References -- Problems -- 6 Aircraft Engine Inlets and Nozzles -- 6.1 Introduction -- 6.2 The Flight Mach Number and Its Impact on Inlet Duct Geometry -- 6.3 Diffusers -- 6.4 An Ideal Diffuser -- 6.5 Real Diffusers and Their Stall Characteristics -- 6.6 Subsonic Diffuser Performance -- 6.7 Subsonic Cruise Inlet -- 6.8 Transition Ducts -- 6.9 An Interim Summary for Subsonic Inlets -- 6.10 Supersonic Inlets -- 6.10.1 Isentropic Convergent-Divergent Inlets -- 6.10.2 Methods to Start a Supersonic Convergent-Divergent Inlet -- 6.11 Normal Shock Inlets -- 6.12 External Compression Inlets -- 6.12.1 Optimum Ramp Angles -- 6.12.2 Design and Off-Design Operation -- 6.13 Variable Geometry-External Compression Inlets -- 6.13.1 Variable Ramps -- 6.14 Mixed-Compression Inlets -- 6.15 Supersonic Inlet Types and Their Performance-A Review -- 6.16 Standards for Supersonic Inlet Recovery -- 6.17 Exhaust Nozzle -- 6.18 Gross Thrust -- 6.19 Nozzle Adiabatic Efficiency -- 6.20 Nozzle Total Pressure Ratio -- 6.21 Nozzle Pressure Ratio (NPR) and Critical Nozzle Pressure Ratio (NPRcrit.) -- 6.22 Relation Between Nozzle Figures of Merit, ηn and n -- 6.23 A Convergent Nozzle or a De Laval? -- 6.24 The Effect of Boundary Layer Formation on Nozzle Internal Performance -- 6.25 Nozzle Exit Flow Velocity Coefficient -- 6.26 Effect of Flow Angularity on Gross Thrust -- 6.27 Nozzle Gross Thrust Coefficient Cfg -- 6.28 Overexpanded Nozzle Flow-Shock Losses -- 6.29 Nozzle Area Scheduling, A8 and A9/A8 -- 6.30 Nozzle Exit Area Scheduling, A9/A8 -- 6.31 Nozzle Cooling -- 6.32 Thrust Reverser and Thrust Vectoring -- 6.33 Hypersonic Nozzle.
6.34 Exhaust Mixer and Gross Thrust Gain in a Mixed-Flow Turbofan Engine -- 6.35 Noise -- 6.35.1 Jet Noise -- 6.35.2 Chevron Nozzle -- 6.36 Nozzle-Turbine (Structural) Integration -- 6.37 Summary of Exhaust Systems -- References -- Problems -- 7 Combustion Chambers and Afterburners -- 7.1 Introduction -- 7.2 Laws Governing Mixture of Gases -- 7.3 Chemical Reaction and Flame Temperature -- 7.4 Chemical Equilibrium and Chemical Composition -- 7.4.1 The Law of Mass Action -- 7.4.2 Equilibrium Constant KP -- 7.5 Chemical Kinetics -- 7.5.1 Ignition and Relight Envelope -- 7.5.2 Reaction Timescale -- 7.5.3 Flammability Limits -- 7.5.4 Flame Speed -- 7.5.5 Flame Stability -- 7.5.6 Spontaneous Ignition Delay Time -- 7.5.7 Combustion-Generated Pollutants -- 7.6 Combustion Chamber -- 7.6.1 Combustion Chamber Total Pressure Loss -- 7.6.2 Combustor Flow Pattern and Temperature Profile -- 7.6.3 Combustor Liner and Its Cooling Methods -- 7.6.4 Combustion Efficiency -- 7.6.5 Some Combustor Sizing and Scaling Laws -- 7.6.6 Afterburner -- 7.7 Combustion-Generated Pollutants -- 7.7.1 Greenhouse Gases, CO2 and H2O -- 7.7.2 Carbon Monoxide, CO, and Unburned Hydrocarbons, UHC -- 7.7.3 Oxides of Nitrogen, NO and NO2 -- 7.7.4 Smoke -- 7.7.5 Engine Emission Standards -- 7.7.6 Low-Emission Combustors -- 7.7.7 Impact of NO on the Ozone Layer -- 7.8 Aviation Fuels -- 7.9 Alternative "Drop-In" Jet Fuels (AJFs) -- 7.10 Combustion Instability: Screech and Rumble -- 7.10.1 Screech Damper -- 7.11 Summary -- References -- Problems -- 8 Axial Compressor Aerodynamics -- 8.1 Introduction -- 8.2 The Geometry -- 8.3 Rotor and Stator Frames of Reference -- 8.4 The Euler Turbine Equation -- 8.5 Axial-Flow Versus Radial-Flow Machines -- 8.6 Axial-Flow Compressors and Fans -- 8.6.1 Definition of Flow Angles -- 8.6.2 Stage Parameters -- 8.6.3 Cascade Aerodynamics.
8.6.4 Aerodynamic Forces on Compressor Blades -- 8.6.5 Three-Dimensional Flow -- 8.7 Compressor Performance Map -- 8.8 Compressor Instability - Stall and Surge -- 8.9 Multistage Compressors and Their Operating Line -- 8.10 Multistage Compressor Stalling Pressure Rise and Stall Margin -- 8.11 Multistage Compressor Starting Problem -- 8.12 The Effect of Inlet Flow Condition on Compressor Performance -- 8.13 Isometric and Cutaway Views of Axial-Flow Compressor Hardware -- 8.14 Compressor Design Parameters and Principles -- 8.14.1 Blade Design - Blade Selection -- 8.14.2 Compressor Annulus Design -- 8.14.3 Compressor Stall Margin -- 8.15 Summary -- References -- Problems -- 9 Centrifugal Compressor Aerodynamics -- 9.1 Introduction -- 9.2 Centrifugal Compressors -- 9.3 Radial Diffuser -- 9.4 Inducer -- 9.5 Inlet Guide Vanes (IGVs) and Inducer-Less Impellers -- 9.6 Impeller Exit Flow and Blockage Effects -- 9.7 Efficiency and Performance -- 9.8 Summary -- References -- Problems -- 10 Aerothermo-dynamics of Gas Turbines -- 10.1 Introduction -- 10.2 Axial-Flow Turbines -- 10.2.1 Optimal Nozzle Exit Swirl Mach Number -- 10.2.2 Turbine Blade Losses -- 10.2.3 Optimum Solidity -- 10.2.4 Turbine Cooling -- 10.3 Turbine Performance Map -- 10.4 The Effect of Cooling on Turbine Efficiency -- 10.5 Turbine Blade Profile Design -- 10.5.1 Angles -- 10.5.2 Other Blade Geometrical Parameters -- 10.5.3 Throat Sizing -- 10.5.4 Throat Reynolds Number Reo -- 10.5.5 Turbine Blade Profile Design -- 10.5.6 Blade Vibration and Campbell Diagram -- 10.5.7 Turbine Blade and Disk Material Selection and Design Criteria -- 10.6 Stresses in Turbine Blades and Disks and Useful Life Estimation -- 10.7 Axial-Flow Turbine Design and Practices -- 10.8 Gas Turbine Design Summary -- 10.9 Summary -- References -- Problems -- 11 Aircraft Engine Component Matching and Off-Design Analysis.
11.1 Introduction.
|