Fractal Geometry : Mathematical Foundations and Applications |
Autore | Falconer Kenneth |
Edizione | [3rd ed.] |
Pubbl/distr/stampa | New York : , : John Wiley & Sons, Incorporated, , 2014 |
Descrizione fisica | 1 online resource (400 pages) |
Disciplina | 514/.742 |
Altri autori (Persone) | FalconerKenneth |
Soggetto topico |
Fractals
Dimension theory (Topology) |
Soggetto genere / forma | Electronic books. |
ISBN |
9781118762851
9781119942399 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface to the first edition -- Preface to the second edition -- Preface to the third edition -- Course suggestions -- Introduction -- Part I Foundations -- Chapter 1 Mathematical background -- 1.1 Basic set theory -- 1.2 Functions and limits -- 1.3 Measures and mass distributions -- 1.4 Notes on probability theory -- 1.5 Notes and references -- Exercises -- Chapter 2 Box-counting dimension -- 2.1 Box-counting dimensions -- 2.2 Properties and problems of box-counting dimension -- 2.3 Modified box-counting dimensions -- 2.4 Some other definitions of dimension -- 2.5 Notes and references -- Exercises -- Chapter 3 Hausdorff and packing measures and dimensions -- 3.1 Hausdorff measure -- 3.2 Hausdorff dimension -- 3.3 Calculation of Hausdorff dimension-simple examples -- 3.4 Equivalent definitions of Hausdorff dimension -- 3.5 Packing measure and dimensions -- 3.6 Finer definitions of dimension -- 3.7 Dimension prints -- 3.8 Porosity -- 3.9 Notes and references -- Exercises -- Chapter 4 Techniques for calculating dimensions -- 4.1 Basic methods -- 4.2 Subsets of finite measure -- 4.3 Potential theoretic methods -- 4.4 Fourier transform methods -- 4.5 Notes and references -- Exercises -- Chapter 5 Local structure of fractals -- 5.1 Densities -- 5.2 Structure of 1-sets -- 5.3 Tangents to s-sets -- 5.4 Notes and references -- Exercises -- Chapter 6 Projections of fractals -- 6.1 Projections of arbitrary sets -- 6.2 Projections of s-sets of integral dimension -- 6.3 Projections of arbitrary sets of integral dimension -- 6.4 Notes and references -- Exercises -- Chapter 7 Products of fractals -- 7.1 Product formulae -- 7.2 Notes and references -- Exercises -- Chapter 8 Intersections of fractals -- 8.1 Intersection formulae for fractals -- 8.2 Sets with large intersection -- 8.3 Notes and references.
Exercises -- Part II Applications and Examples -- Chapter 9 Iterated function systems-self-similar and self-affine sets -- 9.1 Iterated function systems -- 9.2 Dimensions of self-similar sets -- 9.3 Some variations -- 9.4 Self-affine sets -- 9.5 Applications to encoding images -- 9.6 Zeta functions and complex dimensions -- 9.7 Notes and references -- Exercises -- Chapter 10 Examples from number theory -- 10.1 Distribution of digits of numbers -- 10.2 Continued fractions -- 10.3 Diophantine approximation -- 10.4 Notes and references -- Exercises -- Chapter 11 Graphs of functions -- 11.1 Dimensions of graphs -- 11.2 Autocorrelation of fractal functions -- 11.3 Notes and references -- Exercises -- Chapter 12 Examples from pure mathematics -- 12.1 Duality and the Kakeya problem -- 12.2 Vitushkin's conjecture -- 12.3 Convex functions -- 12.4 Fractal groups and rings -- 12.5 Notes and references -- Exercises -- Chapter 13 Dynamical systems -- 13.1 Repellers and iterated function systems -- 13.2 The logistic map -- 13.3 Stretching and folding transformations -- 13.4 The solenoid -- 13.5 Continuous dynamical systems -- 13.6 Small divisor theory -- 13.7 Lyapunov exponents and entropies -- 13.8 Notes and references -- Exercises -- Chapter 14 Iteration of complex functions-Julia sets and the Mandelbrot set -- 14.1 General theory of Julia sets -- 14.2 Quadratic functions-the Mandelbrot set -- 14.3 Julia sets of quadratic functions -- 14.4 Characterisation of quasi-circles by dimension -- 14.5 Newton's method for solving polynomial equations -- 14.6 Notes and references -- Exercises -- Chapter 15 Random fractals -- 15.1 A random Cantor set -- 15.2 Fractal percolation -- 15.3 Notes and references -- Exercises -- Chapter 16 Brownian motion and Brownian surfaces -- 16.1 Brownian motion in R -- 16.2 Brownian motion in Rn -- 16.3 Fractional Brownian motion. 16.4 Fractional Brownian surfaces -- 16.5 Lévy stable processes -- 16.6 Notes and references -- Exercises -- Chapter 17 Multifractal measures -- 17.1 Coarse multifractal analysis -- 17.2 Fine multifractal analysis -- 17.3 Self-similar multifractals -- 17.4 Notes and references -- Exercises -- Chapter 18 Physical applications -- 18.1 Fractal fingering -- 18.2 Singularities of electrostatic and gravitational potentials -- 18.3 Fluid dynamics and turbulence -- 18.4 Fractal antennas -- 18.5 Fractals in finance -- 18.6 Notes and references -- Exercises -- References -- Index. |
Record Nr. | UNINA-9910795832003321 |
Falconer Kenneth | ||
New York : , : John Wiley & Sons, Incorporated, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fractal Geometry : Mathematical Foundations and Applications |
Autore | Falconer Kenneth |
Edizione | [3rd ed.] |
Pubbl/distr/stampa | New York : , : John Wiley & Sons, Incorporated, , 2014 |
Descrizione fisica | 1 online resource (400 pages) |
Disciplina | 514/.742 |
Altri autori (Persone) | FalconerKenneth |
Soggetto topico |
Fractals
Dimension theory (Topology) |
ISBN |
9781118762851
9781119942399 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface to the first edition -- Preface to the second edition -- Preface to the third edition -- Course suggestions -- Introduction -- Part I Foundations -- Chapter 1 Mathematical background -- 1.1 Basic set theory -- 1.2 Functions and limits -- 1.3 Measures and mass distributions -- 1.4 Notes on probability theory -- 1.5 Notes and references -- Exercises -- Chapter 2 Box-counting dimension -- 2.1 Box-counting dimensions -- 2.2 Properties and problems of box-counting dimension -- 2.3 Modified box-counting dimensions -- 2.4 Some other definitions of dimension -- 2.5 Notes and references -- Exercises -- Chapter 3 Hausdorff and packing measures and dimensions -- 3.1 Hausdorff measure -- 3.2 Hausdorff dimension -- 3.3 Calculation of Hausdorff dimension-simple examples -- 3.4 Equivalent definitions of Hausdorff dimension -- 3.5 Packing measure and dimensions -- 3.6 Finer definitions of dimension -- 3.7 Dimension prints -- 3.8 Porosity -- 3.9 Notes and references -- Exercises -- Chapter 4 Techniques for calculating dimensions -- 4.1 Basic methods -- 4.2 Subsets of finite measure -- 4.3 Potential theoretic methods -- 4.4 Fourier transform methods -- 4.5 Notes and references -- Exercises -- Chapter 5 Local structure of fractals -- 5.1 Densities -- 5.2 Structure of 1-sets -- 5.3 Tangents to s-sets -- 5.4 Notes and references -- Exercises -- Chapter 6 Projections of fractals -- 6.1 Projections of arbitrary sets -- 6.2 Projections of s-sets of integral dimension -- 6.3 Projections of arbitrary sets of integral dimension -- 6.4 Notes and references -- Exercises -- Chapter 7 Products of fractals -- 7.1 Product formulae -- 7.2 Notes and references -- Exercises -- Chapter 8 Intersections of fractals -- 8.1 Intersection formulae for fractals -- 8.2 Sets with large intersection -- 8.3 Notes and references.
Exercises -- Part II Applications and Examples -- Chapter 9 Iterated function systems-self-similar and self-affine sets -- 9.1 Iterated function systems -- 9.2 Dimensions of self-similar sets -- 9.3 Some variations -- 9.4 Self-affine sets -- 9.5 Applications to encoding images -- 9.6 Zeta functions and complex dimensions -- 9.7 Notes and references -- Exercises -- Chapter 10 Examples from number theory -- 10.1 Distribution of digits of numbers -- 10.2 Continued fractions -- 10.3 Diophantine approximation -- 10.4 Notes and references -- Exercises -- Chapter 11 Graphs of functions -- 11.1 Dimensions of graphs -- 11.2 Autocorrelation of fractal functions -- 11.3 Notes and references -- Exercises -- Chapter 12 Examples from pure mathematics -- 12.1 Duality and the Kakeya problem -- 12.2 Vitushkin's conjecture -- 12.3 Convex functions -- 12.4 Fractal groups and rings -- 12.5 Notes and references -- Exercises -- Chapter 13 Dynamical systems -- 13.1 Repellers and iterated function systems -- 13.2 The logistic map -- 13.3 Stretching and folding transformations -- 13.4 The solenoid -- 13.5 Continuous dynamical systems -- 13.6 Small divisor theory -- 13.7 Lyapunov exponents and entropies -- 13.8 Notes and references -- Exercises -- Chapter 14 Iteration of complex functions-Julia sets and the Mandelbrot set -- 14.1 General theory of Julia sets -- 14.2 Quadratic functions-the Mandelbrot set -- 14.3 Julia sets of quadratic functions -- 14.4 Characterisation of quasi-circles by dimension -- 14.5 Newton's method for solving polynomial equations -- 14.6 Notes and references -- Exercises -- Chapter 15 Random fractals -- 15.1 A random Cantor set -- 15.2 Fractal percolation -- 15.3 Notes and references -- Exercises -- Chapter 16 Brownian motion and Brownian surfaces -- 16.1 Brownian motion in R -- 16.2 Brownian motion in Rn -- 16.3 Fractional Brownian motion. 16.4 Fractional Brownian surfaces -- 16.5 Lévy stable processes -- 16.6 Notes and references -- Exercises -- Chapter 17 Multifractal measures -- 17.1 Coarse multifractal analysis -- 17.2 Fine multifractal analysis -- 17.3 Self-similar multifractals -- 17.4 Notes and references -- Exercises -- Chapter 18 Physical applications -- 18.1 Fractal fingering -- 18.2 Singularities of electrostatic and gravitational potentials -- 18.3 Fluid dynamics and turbulence -- 18.4 Fractal antennas -- 18.5 Fractals in finance -- 18.6 Notes and references -- Exercises -- References -- Index. |
Record Nr. | UNINA-9910822701303321 |
Falconer Kenneth | ||
New York : , : John Wiley & Sons, Incorporated, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|